用于微藻养殖的风光互补供电系统技术方案

技术编号:20397191 阅读:54 留言:0更新日期:2019-02-20 06:29
用于微藻养殖的风光互补供电系统,属于水产养殖领域,用于解决充分利用海上可再生资源的问题,技术要点是包括风力发电系统、太阳能发电装置及浮式网箱(6),所述的风力发电系统与风机的塔筒(4)顶部固定,塔筒(4)的底部与浮式网箱(6)固定连接,浮式网箱(6)的底部具有被固定于海床上的锚泊线(7),塔筒(4)的中部或中上部安装有太阳能发电装置,所述的风力发电系统、太阳能发电装置的电力运输系统与浮式网箱(6)的供电系统连接,效果是实现了风电互补的微藻养殖。

【技术实现步骤摘要】
用于微藻养殖的风光互补供电系统
本技术是属于海洋可再生能源利用技术和水产养殖工程
,其中涉及了一种风能-太阳能联合发电装置和浮式网箱系统,是用于微藻养殖的、风能和太阳能相结合的集成供电系统。
技术介绍
海上风能、太阳能都是海洋可再生能源,而浮式微藻养殖网箱技术是目前炙手可热的一种新型养殖技术。风力发电是目前最具可规模化和商业化发展前景的可再生能源。海上风电是国际风电发展的新方向,引起了各个国家的重视。发展海上风电对我国环境污染的治理和能源结构的调整都具有重要意义。海上尤其是中远海区域日照充沛,具有丰富的太阳能资源,并且太阳能发电经过了多年的研究,技术相对成熟,输出功率稳定。然而,海上环境条件复杂,气候多变,风力发电和太阳能发电都有制约其发展的因素,能量转化率较低,发电成本较高,一定程度上限制了其商业化和规模化。微藻有望用于替代石油的生物燃料进行生产,但受高生产成本的限制,而采用浮式网箱进行微藻养殖可有效的提高微藻养殖在深远海地区的产业化。该技术的光生物反应器(PBR)是海藻培养系统的关键组成部分,它对海藻培养过程的发展具有重要的意义。冬季的风能资源丰富但太阳能资源欠缺,所以该技术在冬季主要使用风机发电,太阳能发电为辅;在夏季,主要通过太阳能电池板发电,以风机发电为辅。传统微藻养殖采用柴油发电机为微藻养殖提供能源,成本较高,且污染严重。该技术将海上风电开发、太阳能资源和微藻养殖技术有机的结合起来,可以有效的提高海上风电的发电能力,提高整体发电系统的性能和风电场的经济性,推动浮式网箱的微藻养殖的商业化,是解决海上可再生能源的综合利用,降低可再生能源发电成本的有效途径之一。
技术实现思路
为了解决充分利用海上可再生资源的问题,本技术提出如下技术方案:一种用于微藻养殖的风光互补供电系统,包括风力发电系统、太阳能发电装置及浮式网箱,所述的风力发电系统与塔筒顶部固定,塔筒的底部与浮式网箱固定连接,浮式网箱的底部具有被固定于海床上的锚泊线,塔筒的中部或中上部安装有太阳能发电装置,所述的风力发电系统、太阳能发电装置的电力运输系统与浮式网箱的供电系统连接。进一步的,所述风力发电系统包括风机、机舱舱、尾翼、电力传输系统,所述的机舱一端连接风机,另一端连接尾翼,并由机舱与塔筒的顶部固定连接,所述的机舱与电力运输系统连接。尾翼主要用于风机的被动艏摇控制,保证风机始终处于对风方向。进一步的,所述的风机为千瓦级的小型水平轴风力发电机。进一步的,所述的太阳能发电装置包括太阳能电池板主体,太阳能电池板主体主要是由硅材料制成,包括EVA、钢化玻璃、铝合金外框和发电主体,由EVA粘结固定钢化玻璃和发电主体,并将其固定在铝合金框架内。进一步的,浮式网箱主要是由30根圆筒相互焊接而组成的一种正六面体网箱结构,表面由网衣相互连接,网箱内部有培养微藻菌种的塑料薄膜,浮式网箱通过锚泊线固结在海床上,使浮式网箱在六个自由度上有摇摆运动。一种用于微藻养殖的风光互补供电系统的安装方法,包括如下步骤:S1.用现有的海上浮式网箱施工工艺,将浮式网箱湿拖至养殖区域,用连接在浮式网箱的底部的三根锚链将浮式网箱固连在海床上,将浮式网箱与塔筒固定连接;S2.将太阳能发电装置安装到塔筒上;S3.将风力发电系统安装到塔筒的顶部,施工安装结束。有益效果:所述系统可以提高海域的有效利用率,降低了建设成本和维修费用,充分利用风电技术和太阳能发电技术,并结合浮式网箱技术用于微藻养殖,推动生物燃料技术的发展,促进浮式网箱技术的进步,这是一种可靠可商业化的海上可再生能源的发电平台。附图说明图1是本技术的用于微藻养殖的风光互补供电系统的结构图图2是本技术微藻养殖薄膜的局部正视图图3是本技术微藻养殖薄膜的局部俯视图图中:1风机;2机舱;3尾翼;4塔筒;5太阳能电池板;6浮式网箱;7锚泊线;8网衣;9塑料薄膜;10微藻。具体实施方式实施例1:图1和图2出示了本技术所述的用于微藻养殖的风光互补供电系统,更明确的说,是一种用于微藻养殖的浮式风能-太阳能集成发电系统,使风力发电系统、太阳能发电装置及浮式网箱6三者共享支撑结构和供电传输系统。在海洋中系统建立风能、太阳能和浮式网箱于一体的集成系统,既可以用于发电,也可用于微藻养殖,具有优势互补,能源共享的特点,该技术可以充分利用海上可再生资源,从而达到提高利用效率并且降低集成系统发电总成本的目的,提高海上风电场的整体经济效益,降低风能、太阳能发电成本,也可以降低浮式网箱微藻养殖的高生产成本。一种用于深海微藻养殖的风能-太阳能集成发电系统,小型风力发电机、太阳能板的太阳能集成发电结构以及浮式网箱系统,包括小型风力发电系统、太阳能板的太阳能发电装置和浮式网箱装置;所述的风力发电系统包括风机1、机舱2、尾翼3、塔筒4、锚泊系统和电力运输系统;所述的风机1通过塔筒4与浮式网箱6相连,浮式网箱6通过锚泊线7固定在海床上;所述的太阳能发电装置即太阳能电板5通过套筒固定在塔筒4上;所述的浮式网箱装置与塔筒底端固结,浮式网箱的底部通过三个锚泊线7固连在海床上,实现平台的稳定;所述的太阳能发电装置5包括太阳能电池板主体,太阳能电池板主要是硅材料制成,包括EVA(乙烯-乙酸乙烯酯共聚物),钢化玻璃,铝合金外框和太阳能电池,太阳能电池板主要是吸收太阳光,所以对EVA的透光率要求较高,太阳辐射能通过光电效应或者光化学效应直接或间接将太阳能转化成电能;所述的浮式网箱装置包括网衣8、塑料薄膜(PBR)9和微藻10,该技术的浮式网箱结构主要是由30根圆筒相互焊接而成组成的一种正六面体网箱结构,表面由网衣相互连接,网箱内部有塑料薄膜PBR,塑料薄膜里培养着微藻菌种,浮式网箱由三根锚泊线固结在海床上,使浮式网箱可以在六个自由度上有摇摆运动,增加氧气含量,促进微藻的的光合作用。所述的风机1为千瓦级的小型水平轴风力发电机。所述的太阳能发电装置5是由硅材料制成的太阳能电池板。本技术充分利用了小型风力发电机,和太阳能装置、浮式网箱共享支撑结构和电力运输系统。本技术所述的用于微藻养殖的风能-太阳能集成发电系统,其特征在于采用的是千瓦级的小型风力机和太阳能板的能源集成发电系统,当天气晴朗无风时,太阳能电板吸收太阳能,将太阳能转化成电能,当海上光照不充沛时,通常伴有强风出现,小型风力机可以将风能转化成电能,两者的集成系统可以有效地实现能源互补,相互促进,更好的维持该集成发电系统,而浮式网箱的正六面体结构可以有效地减小波浪载荷,同时也能保证平台具有一定的摇摆运动,促进微藻的光合作用。本技术的有益效果:1、小型风机结构简单、施工便利、建造成本低、适用性强。2、将海上风电同太阳能发电装置和浮式网箱结构相结合,公用海上浮式平台、变压、输电等设备,提高了系统的整体发电功率,增加了发电量,同时微藻养殖中混合的能量消耗会导致藻类生物燃料的负能量平衡,这是制约藻类生物燃料商业化的一个巨大障碍,所以,使用可再生能源发电,如太阳能或风能,可以有效的解决这个问题。3、太阳能发电装置可以弥补海上无风情况下该系统的能源供应。4、该新型浮式风能-太阳能集成发电系统和浮式网箱系统可以提高海域的有效利用率,降低了建设成本和维修费用,充分利用已经成熟本文档来自技高网
...

【技术保护点】
1.一种用于微藻养殖的风光互补供电系统,其特征在于,包括风力发电系统、太阳能发电装置及浮式网箱(6),所述的风力发电系统与塔筒(4)顶部固定,塔筒(4)的底部与浮式网箱(6)固定连接,浮式网箱(6)的底部具有被固定于海床上的锚泊线(7),塔筒(4)的中部或中上部安装有太阳能发电装置,所述的风力发电系统、太阳能发电装置的电力运输系统与浮式网箱(6)的供电系统连接,浮式网箱(6)主要是由30根圆筒相互焊接而组成的一种正六面体网箱结构,表面由网衣(8)相互连接,网箱内部有培养微藻菌种的塑料薄膜(9),浮式网箱(6)由锚泊线(7)固连在海床上,使浮式网箱(6)在六个自由度上有摇摆运动。

【技术特征摘要】
1.一种用于微藻养殖的风光互补供电系统,其特征在于,包括风力发电系统、太阳能发电装置及浮式网箱(6),所述的风力发电系统与塔筒(4)顶部固定,塔筒(4)的底部与浮式网箱(6)固定连接,浮式网箱(6)的底部具有被固定于海床上的锚泊线(7),塔筒(4)的中部或中上部安装有太阳能发电装置,所述的风力发电系统、太阳能发电装置的电力运输系统与浮式网箱(6)的供电系统连接,浮式网箱(6)主要是由30根圆筒相互焊接而组成的一种正六面体网箱结构,表面由网衣(8)相互连接,网箱内部有培养微藻菌种的塑料薄膜(9),浮式网箱(6)由锚泊线(7)固连在海床上,使浮式网箱(6)在六个自由度上有摇摆运动。2.如权利要求1所述...

【专利技术属性】
技术研发人员:施伟周林周利柴威张礼贤唐业
申请(专利权)人:大连理工大学
类型:新型
国别省市:辽宁,21

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1