当前位置: 首页 > 专利查询>海南大学专利>正文

一种基于密度的参数自适应聚类方法技术

技术编号:20221700 阅读:41 留言:0更新日期:2019-01-28 20:13
本发明专利技术公开了一种基于密度的参数自适应聚类方法,涉及数据挖掘技术领域。该方法包括以下步骤:S1、数据集的预处理:输入待处理的数据集,利用预设的滑动窗口截取数据流,对截取的单元数据进行预处理以得到训练数据;S2、训练数据的模型训练和优化:对所述训练数据进行聚类,以得到所述训练数据的独立的簇和簇中心;将所有的簇进行模型训练,并将训练后的簇进行优化选择以得到优选参数,再将优优选参数的簇进行训练,以得到模型组;S3、模型匹配:将测试数据与所有的簇中心进行相似度匹配,得到最相似的簇中心对应的簇,以获得与该簇对应的相似模型;S4、预测分析:根据所述相似模型计算所述测试数据,以得到所述测试数据的预测值。

【技术实现步骤摘要】
一种基于密度的参数自适应聚类方法
本专利技术涉及数据挖掘
,特别是涉及一种基于密度的参数自适应聚类方法。
技术介绍
随着计算机技术的提高和互联网技术的迅猛发展,各行各业的数据量都发生了翻天覆地的变化。由于在这些海量复杂数据的背后隐藏着很多有价值的规律和信息,大数据挖掘方法在大数据领域就显得尤为重要。数据挖掘主要结合了人工智能、机器学习、模式学习、统计学等知识,广泛应用于银行、电信、电商等商业领域,并成功帮助企业、用户、商家调整市场政策、减少风险、理性面对市场,并做出正确的决策。利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、偏差分析和Web页挖掘等。而聚类在数据挖掘中是一个非常重要的方法,主要针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。数据之间的相似度很多是根据数据之间的距离来表示的。这种方法在计算速度上虽然有提高,但是只能发现球状的簇,而对于任意形状的簇,不能得到理想的聚类效果。由于DBSCAN(Density-BasedSpatialClusteringofA本文档来自技高网...

【技术保护点】
1.一种基于密度的参数自适应聚类方法,其特征在于,包括以下步骤:S1、数据集的预处理:输入待处理的数据集,利用预设的滑动窗口截取数据流,对截取的单元数据进行预处理以得到训练数据;S2、训练数据的模型训练和优化:对所述训练数据进行聚类,以得到所述训练数据的独立的簇和簇中心;将所有的簇进行模型训练,并将训练后的簇进行优化选择以得到优选参数,再将优优选参数的簇进行训练,以得到模型组;S3、模型匹配:将测试数据与所有的簇中心进行相似度匹配,得到最相似的簇中心对应的簇,以获得与该簇对应的相似模型;S4、预测分析:根据所述相似模型计算所述测试数据,以得到所述测试数据的预测值。

【技术特征摘要】
1.一种基于密度的参数自适应聚类方法,其特征在于,包括以下步骤:S1、数据集的预处理:输入待处理的数据集,利用预设的滑动窗口截取数据流,对截取的单元数据进行预处理以得到训练数据;S2、训练数据的模型训练和优化:对所述训练数据进行聚类,以得到所述训练数据的独立的簇和簇中心;将所有的簇进行模型训练,并将训练后的簇进行优化选择以得到优选参数,再将优优选参数的簇进行训练,以得到模型组;S3、模型匹配:将测试数据与所有的簇中心进行相似度匹配,得到最相似的簇中心对应的簇,以获得与该簇对应的相似模型;S4、预测分析:根据所述相似模型计算所述测试数据,以得到所述测试数据的预测值。2.根据权利要求1所述的基于密度的参数自适应聚类方法,其特征在于,所述步骤S2还包括:通过OVDBSCAN算法对所述训练数据进行聚类,得到所述训练数据的独立的簇和簇中心。3.根据权利要求2所述的基于密度的参数自适应聚类方法,其特征在于,所述步骤S2还包括:将所有的簇进行SVR模型的模型训练,并将训练后的簇通过PSO进行SVR模型优化选择以得到优选参数。4.根据权利要求3所述的基于密度的参...

【专利技术属性】
技术研发人员:黄梦醒张雨冯文龙沈亮亮鲍琦莉
申请(专利权)人:海南大学
类型:发明
国别省市:海南,46

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1