当前位置: 首页 > 专利查询>东北大学专利>正文

一种氟碳铈矿还原伴生稀土矿的赤铁矿的分离方法技术

技术编号:20004529 阅读:44 留言:0更新日期:2019-01-05 17:27
本发明专利技术涉及矿物加工工程技术领域,具体涉及一种氟碳铈矿还原伴生稀土矿的赤铁矿的分离方法。所述分离方法为以伴生稀土矿的赤铁矿为原料,氟碳铈矿为还原剂,将伴生稀土矿的赤铁矿经过磨矿、筛分、烘干后经弱磁选得到伴生稀土矿的赤铁矿弱磁尾矿,再经强磁选得到伴生稀土矿的赤铁矿强磁精矿;与氟碳铈矿混合以伴生稀土矿的赤铁矿强磁精矿中铁含量与氟碳铈矿中稀土元素氧化物质量比为1:1~1:3混合,以惰性气体或氮气作为保护气,700~950℃焙烧温度下流态化焙烧10~30分钟得焙烧产物,冷却后经弱磁选分离。本发明专利技术方法充分利用了氟碳铈矿,同时使伴生矿中的稀土和赤铁矿分离,提高铁品位和稀土元素氧化物回收率。

A Separation Method of Hematite from Redoped Rare Earth Ore by Reduction of Cerium Fluorocarbon Ore

The invention relates to the field of mineral processing engineering technology, in particular to a separation method of hematite associated with reduction of fluorocarbon cerium ore. The separation method is that the hematite weak magnetic tailings of associated rare earth ores are obtained by grinding, screening and drying the hematite of associated rare earth ores with hematite as raw material and cerium fluoride as reducing agent, and then the hematite strong magnetic concentrate of associated rare earth ores is obtained by strong magnetic separation, and iron content in hematite strong magnetic concentrate of associated rare earth ores is mixed with cerium fluoride ore. The roasting products were obtained by fluidization roasting at 700-950 C for 10-30 minutes, using inert gas or nitrogen as protective gas, mixed with the mass ratio of rare earth oxide in bastnaesite at 1:1-1:3, and separated by weak magnetic separation after cooling. The method of the invention makes full use of the fluorocarbon cerium ore, separates the rare earth and hematite in the associated ore, and improves the iron grade and the recovery rate of rare earth oxide.

【技术实现步骤摘要】
一种氟碳铈矿还原伴生稀土矿的赤铁矿的分离方法
本专利技术涉及矿物加工工程
,具体涉及一种氟碳铈矿还原伴生稀土矿的赤铁矿的分离方法。
技术介绍
稀土元素由于其独特的电子层结构,使其具有独特的物理和化学性质。由于其性能上的特殊性,稀土作为一种功能材料,不仅广泛应用于传统产业而且已经逐步成为信息、生物、新材料、新能源等高新
的重要支撑材料。世界上95%以上的稀土氧化物以三种矿物形式产出,即主要含轻稀土的独居石和氟碳铈(镧)矿,以及含重稀土和钇的磷钇矿。氟碳铈(镧)矿是提取提炼铈、镧等稀土元素及稀土化合物的重要矿物原料。因此,对于氟碳铈矿的研究具有重大的意义。在伴生稀土矿的铁矿物中,如果不对二者分离,直接送进高炉炼铁,会造成高炉利用系数低下,且氟碳铈矿中的氟元素也会在冶炼过程中逸出,污染环境。而国内稀土冶炼工艺多采用高温硫酸强化焙烧水浸稀土法,稀土矿物与硫酸混合经加热反应,全部生成稀土硫酸盐而后可进入水浸液,如果稀土矿中铁矿品位较高,那么会消耗更多的硫酸,使生产成本增加。所以,将伴生稀土矿的赤铁矿中的赤铁矿和稀土矿分离就十分有必要了。伴生稀土矿的赤铁矿中的氟碳铈矿由于磁性和弱磁性的赤铁矿相似,所以难以用磁选的方法将其有效分离。目前,国内工业上采用强磁选来回收赤铁矿和稀土,使赤铁矿和稀土都进入强磁精矿中,再用浮选的方法分离强磁选精矿中的铁和稀土,但赤铁矿和氟碳铈矿都属于氧化矿类矿物,在用脂肪酸类捕收剂捕收时,二者都会进入浮选精矿,造成铁精矿品位偏低,而且浮选分离的方法使用了大量的药剂,不但使得选矿成本高,而且易于污染环境;也有通过磁化焙烧的方法,使弱磁性的赤铁矿变成强磁性的磁铁矿,再通过弱磁选的方法分离铁和稀土,但该方法没有考虑二者本身的氧化还原性质,使用了大量的还原性气体,使赤铁矿被还原。因此,开发一种新型高效的分离伴生稀土矿的赤铁铁矿方法显得至关重要,这对高效开发利用稀土资源也具有重大意义。
技术实现思路
本专利技术旨在克服现有技术的缺陷,提供一种以氟碳铈矿为还原剂还原伴生稀土矿的赤铁矿的方法。在该方法中,伴生稀土矿的赤铁矿中赤铁矿最终变成强磁性的磁铁矿用弱磁选机回收,而氟碳铈矿变为铈的氧化物呈弱磁性,从而进入到弱磁选尾矿里。该方法利用欲分离的两种矿物天然氧化还原性质,在没有还原或氧化气体的条件下,仅仅通过惰性气体作为保护气和载体,让微米级粒度的赤铁矿和氟碳铈矿在流态化状态下充分接触,在高温时,二者自身发生一系列复杂的氧化还原反应,最终赤铁矿变为强磁性的磁铁矿,氟碳铈矿变为还是弱磁性的铈的氧化物。由于赤铁矿和氟碳铈矿焙烧之后,存在磁性差异,故利用弱磁选就能将二者分离。一种氟碳铈矿还原伴生稀土矿的赤铁矿的分离方法,以伴生稀土矿的赤铁矿为原料,氟碳铈矿为还原剂,将伴生稀土矿的赤铁矿经过磨矿、筛分、烘干后经弱磁选得到伴生稀土矿的赤铁矿弱磁尾矿,再将伴生稀土矿的赤铁矿弱磁尾矿经强磁选得到伴生稀土矿的赤铁矿强磁精矿,将伴生稀土矿的赤铁矿强磁精矿和氟碳铈矿以伴生稀土矿的赤铁矿强磁精矿中铁与氟碳铈矿中稀土元素氧化物的质量比为1:1~1:3混合,得混合矿,以惰性气体或氮气作为保护气,700~950℃焙烧温度下流态化焙烧10~30分钟得焙烧产物,冷却后经弱磁选分离。优选地,所述伴生稀土矿的赤铁矿是铁品位7%~14%,稀土元素氧化物品位5%~8%的矿物。优选地,所述氟碳铈矿为稀土元素氧化物品位大于70%的矿物。本专利技术所述伴生稀土矿的赤铁矿优选为白云鄂博尾矿。优选地,所述磨矿、筛分步骤使伴生稀土矿的赤铁矿经过磨矿、筛分达到颗粒粒度-70~-80μm占60%~80%。。本专利技术所述的球磨机为实验室的溢流型陶瓷球磨机,也可以是充填介质不锈钢球、钢棒的其他磨机。本专利技术所述筛分所用筛子为筛孔直径0.070~0.080mm的标准筛。优选地,所述伴生稀土矿的赤铁矿弱磁选的磁场强度为100~200kA/m,所述伴生稀土矿的赤铁矿强磁选的磁场强度为600~800kA/m。优选的保护气为N2或者He。优选地,所述保护气气体流量为3~5m3/h。优选地,所述焙烧产物的弱磁选的磁场强度为79.6~238.7kA/m。本专利技术所述的焙烧产物的弱磁选,所用弱磁选机为任何可以提供磁场强度为79.6~238.7kA/m的弱磁选设备,例如磁选管,筒式弱磁选机等。本专利技术所述的流态化焙烧于商业可购流态化焙烧炉中进行,如闪速焙烧炉、循环流态化焙烧炉、悬浮焙烧炉中的一种。本专利技术所述的焙烧产物经弱磁选分离得到的矿物为,弱磁精矿即为强磁性的磁铁矿,弱磁尾矿为铈的氧化物。优选地,所述焙烧矿包括呈强磁性的磁铁矿和呈弱磁性的铈的氧化物。本专利技术所述焙烧产物包括呈强磁性的磁铁矿和呈弱磁性的铈的氧化物,还包括其他矿物杂质。优选地,所述铈的氧化物为CeO2或者CeO2和Ce2O3的混合物。本专利技术的实际有益效果为:在分选伴生稀土矿的赤铁矿这类矿石时,首先用弱磁选作业来回收其中的强磁性矿物,再通过强磁选作业抛除非磁性的脉石矿物,使赤铁矿和稀土富集在强磁精矿中,提高了稀土和赤铁矿品位,为后续焙烧提供有利条件。在后续焙烧中,根据强磁精矿中赤铁矿和稀土的品位,再添加不同量的氟碳铈矿在中性气氛下焙烧就能使赤铁矿转变为强磁性的磁铁矿,大大的减少了还原性气体的用量,减少了二氧化碳的排放,降低了能耗,而氟碳铈矿变成了铈的氧化物,呈弱磁性,仍然具有广泛的用途,并不影响氟碳铈矿的价值。本专利技术充分利用了氟碳铈矿,同时使伴生矿中的稀土和赤铁矿分离,提高铁品位和稀土元素氧化物回收率。具体实施方式下述非限制性实施例可以使本领域的普通技术人员更全面地理解本专利技术,但不以任何方式限制本专利技术。下述实施例中所述试验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。本专利技术所述铁品位可写作全铁(TFe)品位,全铁品位是指矿石中所有的铁元素的含量。稀土元素氧化物品位可写作(REO)品位。实施例1本实例以白云鄂博尾矿为原料,氟碳铈矿为还原剂,其中白云鄂博尾矿铁(TFe)品位为11.38%,稀土元素氧化物(REO)品位6.04%。氟碳铈矿为商业购得,稀土元素氧化物(REO)品位为72.68%,粒度-74μm占80%。利用本专利技术方法将伴生稀土矿的赤铁矿中赤铁矿还原成磁铁矿从而达到分离伴生稀土矿的赤铁矿的目的,具体包括以下步骤:(1)对白云鄂博尾矿进行磨矿作业,经湿式筛分可得粒度-74μm含量达到82%,再将矿样烘干备用。(2)将磨好的白云鄂博尾矿给入磁场强度为100kA/m的筒式弱磁选机中,经过弱磁选得到白云鄂博尾矿弱磁精矿和白云鄂博尾矿弱磁尾矿。(3)将得到的白云鄂博尾矿弱磁选尾矿给入强磁选机,强磁选机磁场强度为600kA/m,得到的白云鄂博尾矿强磁精矿,化验其中全铁(TFe)品位为12.78%,氟碳铈矿稀土(REO)品位8.19%。(4)称取白云鄂博尾矿的强磁选精矿8克和氟碳铈矿3克混合均匀(白云鄂博尾矿强磁精矿中铁与氟碳铈矿中稀土元素氧化物的质量比为1:1.421),混合之后,TFe品位降为9.29%。然后将混合矿放于实验室管式焙烧炉中,进行流态化焙烧,使用纯氮气气体作为保护气,总气体流量为4m3/h,以800℃的焙烧温度焙烧20分钟,得到焙烧产物。(5)在焙烧产物自然冷却后进行磁选管弱本文档来自技高网
...

【技术保护点】
1.一种氟碳铈矿还原伴生稀土矿的赤铁矿的分离方法,其特征在于,以伴生稀土矿的赤铁矿为原料,氟碳铈矿为还原剂,将伴生稀土矿的赤铁矿经过磨矿、筛分、烘干后经弱磁选得到伴生稀土矿的赤铁矿弱磁尾矿,再将伴生稀土矿的赤铁矿弱磁尾矿经强磁选得到伴生稀土矿的赤铁矿强磁精矿;将伴生稀土矿的赤铁矿强磁精矿和氟碳铈矿以伴生稀土矿的赤铁矿强磁精矿中铁与氟碳铈矿中稀土元素氧化物的质量比为1:1~1:3混合,得混合矿,以惰性气体或氮气作为保护气,700~950℃焙烧温度下流态化焙烧10~30分钟得焙烧产物,冷却后经弱磁选分离。

【技术特征摘要】
1.一种氟碳铈矿还原伴生稀土矿的赤铁矿的分离方法,其特征在于,以伴生稀土矿的赤铁矿为原料,氟碳铈矿为还原剂,将伴生稀土矿的赤铁矿经过磨矿、筛分、烘干后经弱磁选得到伴生稀土矿的赤铁矿弱磁尾矿,再将伴生稀土矿的赤铁矿弱磁尾矿经强磁选得到伴生稀土矿的赤铁矿强磁精矿;将伴生稀土矿的赤铁矿强磁精矿和氟碳铈矿以伴生稀土矿的赤铁矿强磁精矿中铁与氟碳铈矿中稀土元素氧化物的质量比为1:1~1:3混合,得混合矿,以惰性气体或氮气作为保护气,700~950℃焙烧温度下流态化焙烧10~30分钟得焙烧产物,冷却后经弱磁选分离。2.根据权利要求1所述的方法,其特征在于,所述伴生稀土矿的赤铁矿是铁品位7%~14%,稀土元素氧化物品位5%~8%的矿物。3.根据权利要求1所述的方法,其特征在于,所述氟碳铈矿为稀土元素氧化物品位大于...

【专利技术属性】
技术研发人员:李文博卢位武锋杨峰
申请(专利权)人:东北大学
类型:发明
国别省市:辽宁,21

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1