汽车轻量化优化方法技术

技术编号:19964501 阅读:33 留言:0更新日期:2019-01-03 12:57
一种汽车轻量化优化方法,包括:搭建多种车型的上车体的SFE模型,以得到多个上车体模型,并搭建与多个所述上车体模型适配的下车体的SFE模型,以得到一下车体模型;分别将多个所述上车体模型与所述下车体模型进行整车模型搭建,得到多个整车SFE模型;基于isight平台以车身重量最小为目标对每个所述整车SFE模型进行优化,以确定所述下车体模型中加强件最优的截面尺寸和料厚,得到优化后的目标下车体模型;将所述目标下车体模型分别与多个所述上车体模型进行整车模型搭建,得到多个白车身SFE模型;基于isight平台以车身重量最小为目标,对每个所述白车身SFE模型进行优化,以确定每个所述上车体模型中加强件最优的截面尺寸和料厚。

Optimizing Method of Automobile Lightweight

A lightweight optimization method for automobiles includes: building SFE models of various types of bodywork to obtain multiple bodywork models, and building SFE models of bodywork that are adapted to multiple bodywork models to obtain bodywork models; building multiple bodywork models of bodywork and bodywork models of bodywork to obtain multiple bodywork models based on iFE; The sight platform optimizes the SFE model of each vehicle with the objective of minimizing the body weight to determine the optimal cross-section size and material thickness of the reinforcement in the downbody model, and obtains the optimized target downbody model. The target downbody model is constructed with several upper body models separately, and several white body SFE models are obtained based on the iSIGHT platform. In order to minimize the body weight, the SFE model of each body in white is optimized to determine the optimal section size and material thickness of the reinforced parts in each body model.

【技术实现步骤摘要】
汽车轻量化优化方法
本专利技术涉及汽车领域,特别是涉及一种汽车轻量化优化方法。
技术介绍
随着国内汽车行业的迅猛发展,汽车的普及率越来越高,国内各大汽车企业的产品开发能力也取得了巨大进步。目前,如何在产品开发中提高效率和降低成本,成为各大汽车主机厂未来生存的关键因素。平台化开发技术,即在满足性能带宽的前提下尽可能地实现通用化及轻量化,使得各种车型如SUV及MPV车型大量通用车身零部件,从而最大限度的降低研发成本、生产成本及管理成本。轻量化技术影响汽车的燃油经济型、动力性能、制动性能,如何实现轻量化提高产品竞争力是各个汽车企业迫在眉睫的一项紧迫任务。但是,当前国内绝大部分主机厂仍然不具备有效的通用化化及轻量化开发技术,使得产品开发周期长、成本高、竞争能力不强。
技术实现思路
鉴于上述状况,有必要针对现有技术中汽车开发过程不具备通用化及轻量化的问题,提供一种汽车轻量化优化方法。一种汽车轻量化优化方法,包括:搭建多种车型的上车体的SFE模型,以得到多个上车体模型,并搭建与多个所述上车体模型适配的下车体的SFE模型,以得到一下车体模型;分别将多个所述上车体模型与所述下车体模型进行整车模型搭建,得到多个整车SFE模型;基于isight平台以车身重量最小为目标对每个所述整车SFE模型进行优化,以确定所述下车体模型中加强件最优的截面尺寸和料厚,得到优化后的目标下车体模型;将所述目标下车体模型分别与多个所述上车体模型进行整车模型搭建,得到多个白车身SFE模型;基于isight平台以车身重量最小为目标,对每个所述白车身SFE模型进行优化,以确定每个所述上车体模型中加强件最优的截面尺寸和料厚。进一步的,上述汽车轻量化优化方法,其中,所述基于isight平台以车身重量最小为目标对每个所述整车SFE模型进行优化,以确定所述下车体模型中加强件最优的截面尺寸和料厚的步骤包括:对每个所述整车SFE模型进行拓扑优化分析,以确定满足属性目标条件的下车体模型,所述属性目标包括安全性能和NVH性能条件;基于isight平台以车身重量最小为目标对所述下车体模型进行优化,以确定所述下车体模型中的加强件最优的截面和料厚。进一步的,上述汽车轻量化优化方法,其中,所述基于isight平台以车身重量最小为目标,对每个所述白车身SFE模型进行优化,以确定每个所述上车体模型中加强件最优的截面尺寸和料厚的步骤包括:对每个所述白车身SFE模型进行拓扑优化分析,以确定满足属性目标条件的各个所述上车体模型,所述属性目标包括安全性能和NVH性能条件;基于isight平台以车身重量最小为目标对各个所述上车体模型进行优化,以确定每个所述上车体模型中的加强件最优的截面和料厚。进一步的,上述汽车轻量化优化方法,其中,所述对每个所述整车SFE模型进行拓扑优化分析,以确定满足属性目标条件的下车体模型的步骤包括:基于optistruct平台,以全局弯曲、扭转刚度及模态为约束,以车身重量最小为目标,进行拓扑优化,以确定满足属性目标条件的下车体模型。进一步的,上述汽车轻量化优化方法,其中,所述基于isight平台以车身重量最小为目标对所述下车体模型进行优化,以确定所述下车体模型中的加强件最优的截面和料厚的步骤:基于SFE平台,将加强件的截面尺寸、料厚尺寸设置为变量;将SFE中定义的各个变量生成正交矩阵,得到不同的加强件的截面尺寸、料厚及长度的车身结构的有限元模型;基于isight软件的遗传优化算法,确定满足安全、NVH性能条件下车身重量最小的加强件的截面尺寸及对应的料厚。进一步的,上述汽车轻量化优化方法,其中,所述基于isight平台以车身重量最小为目标对每个所述整车SFE模型进行优化的步骤之前好包括:对每个所述整车SFE模型进行安全性能、NVH性能分析。本专利技术实施例中,基于SFE平台对多个车型的上车体模型,以及初步建立与各个上车体模式匹配的下车体模型,采用isight平台技术,综合考虑不同上车体的性能(轻量化)差异对下车体模型进行优化,保证下车体的通用化率可以满足不同车型的上车体的需要。再在优化的下车体模型的基础上对各个车型的上车体进行轻量化优化,从而实现不同车型的整车轻量化的优化目的。附图说明图1为本专利技术第一实施例中的汽车轻量化优化方法的流程图;图2为本专利技术第二实施例中的汽车轻量化优化方法的流程图。具体实施方式下面详细描述本专利技术的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本专利技术,而不能理解为对本专利技术的限制。参照下面的描述和附图,将清楚本专利技术的实施例的这些和其他方面。在这些描述和附图中,具体公开了本专利技术的实施例中的一些特定实施方式,来表示实施本专利技术的实施例的原理的一些方式,但是应当理解,本专利技术的实施例的范围不受此限制。相反,本专利技术的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。请参阅图1,为本专利技术第一实施例中的汽车轻量化优化方法,包括步骤S11~S15。步骤S11,搭建多种车型的上车体的SFE模型,以得到多个上车体模型,并搭建与多个所述上车体模型适配的下车体的SFE模型,以得到一下车体模型。本实施例基于平台化开发技术,在满足性能带宽的前提下尽可能地实现通用化及轻量化。车身结构一般分为上车体和下车体,下车体一般用于承载发动机、底盘和空调等重要的质量模块,因此下车体的主要功能之一是为这些零件提供安装点。利用平台化对多款车型的上车体和下车体进行开发,保证下车体的性能带宽和通用化率可以满足不同车型的需要。上述步骤中所指的多种车型可根据实际情况进行选择,例如可以选择SUV和MPV两种车型的上车体。通过SFE软件分别建立各个车型的上车体的SFE模型,得到多个上车体模型。其中,SFE软件即是采用隐式全参数化的描述车体的拓扑结构,将复杂的产品结构以断面、加强件、接头和自由曲面等形式模块化体现出来,并最终转化为方便后续面向装配或面向制造的CAD模型。具体的,在SFE软件中,根据车身结构中的关键点的坐标信息建立点,该关键点如汽车的连接柱(如A柱、B柱等)的上下接头位置点;根据所述点信息建立反映车身特征的曲线,如A柱的曲线;创建各个位置的截面(如A柱、B柱等);基于建立的曲线和截面,拉伸搭建上车体的SFE模型。根据多个上车体模型建立一个初步的通用性的下车体SFE模型,使其满足总布置的要求。其中,总布置要求主要考虑到下车体与上车体的连接点、位置关系,以及各个子系统(如发动机总成、地板总成等)在下车体中的位置和与下车体的间隙等因素。由于车身详细CAD结构的设计会基于SFE参数化模型优化后的方案为参考,所以SFE模型搭建及优化也要考虑生产的工艺要求。其中,工艺要求主要是指焊接工艺,涂装工艺,冲压工艺等条件的要求。步骤S12,分别将多个所述上车体模型与所述下车体模型进行整车模型搭建,得到多个整车SFE模型。将步骤S11中建立的多个上车体模型分别与建立的一个下车提模型进行整车模型搭建,其整车模型的搭建也基于SFE软件,可得到多个整车SFE模型。具体实施时,还可以对每个整车SFE模型进行初步的安全性能和NVH性能分析,以对每个整车SFE模型进行初步的调整。步骤本文档来自技高网...

【技术保护点】
1.一种汽车轻量化优化方法,其特征在于,包括:搭建多种车型的上车体的SFE模型,以得到多个上车体模型,并搭建与多个所述上车体模型适配的下车体的SFE模型,以得到一下车体模型;分别将多个所述上车体模型与所述下车体模型进行整车模型搭建,得到多个整车SFE模型;基于isight平台以车身重量最小为目标对每个所述整车SFE模型进行优化,以确定所述下车体模型中加强件最优的截面尺寸和料厚,得到优化后的目标下车体模型;将所述目标下车体模型分别与多个所述上车体模型进行整车模型搭建,得到多个白车身SFE模型;基于isight平台以车身重量最小为目标,对每个所述白车身SFE模型进行优化,以确定每个所述上车体模型中加强件最优的截面尺寸和料厚。

【技术特征摘要】
1.一种汽车轻量化优化方法,其特征在于,包括:搭建多种车型的上车体的SFE模型,以得到多个上车体模型,并搭建与多个所述上车体模型适配的下车体的SFE模型,以得到一下车体模型;分别将多个所述上车体模型与所述下车体模型进行整车模型搭建,得到多个整车SFE模型;基于isight平台以车身重量最小为目标对每个所述整车SFE模型进行优化,以确定所述下车体模型中加强件最优的截面尺寸和料厚,得到优化后的目标下车体模型;将所述目标下车体模型分别与多个所述上车体模型进行整车模型搭建,得到多个白车身SFE模型;基于isight平台以车身重量最小为目标,对每个所述白车身SFE模型进行优化,以确定每个所述上车体模型中加强件最优的截面尺寸和料厚。2.如权利要求1所述的汽车轻量化优化方法,其特征在于,所述基于isight平台以车身重量最小为目标对每个所述整车SFE模型进行优化,以确定所述下车体模型中加强件最优的截面尺寸和料厚的步骤包括:对每个所述整车SFE模型进行拓扑优化分析,以确定满足属性目标条件的下车体模型,所述属性目标包括安全性能和NVH性能条件;基于isight平台以车身重量最小为目标对所述下车体模型进行优化,以确定所述下车体模型中的加强件最优的截面和料厚。3.如权利要求1所述的汽车轻量化优化方法,其特征在于,所述基于isight平台以车身重量最小为目标,对每个所述白车身SFE模型进行优化,以确定每个所述上车体模型中...

【专利技术属性】
技术研发人员:陈为欢余显忠黄晖邱星段龙杨王伟陈磊肖超夏昌华赵文娟
申请(专利权)人:江铃汽车股份有限公司
类型:发明
国别省市:江西,36

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1