一种基于图论的轴承半监督故障诊断方法技术

技术编号:19931462 阅读:31 留言:0更新日期:2018-12-29 03:35
本发明专利技术提供一种基于图论的轴承半监督故障诊断方法,该方法首先利用可视图算法将通过传感器得到的轴承原始振动加速度信号转换成复杂网络;再计算复杂网络的结构参数,提取度分布的均值和标准差及网络复杂指数;最后利用基于图的半监督学习处理无标签样本,实现轴承故障诊断。本发明专利技术基于少量的标签样本和无标签样本,本发明专利技术实现了变工况且样本类别不平衡下情况下的轴承故障诊断,故障识别准确率高,具有显著的使用价值。

【技术实现步骤摘要】
一种基于图论的轴承半监督故障诊断方法
本专利技术涉及一种基于图论的轴承半监督故障诊断方法,属于机械零部件故障诊断

技术介绍
滚动轴承是使用最频繁的机械零部件之一。据统计,在所有机械故障中,超过40%的故障由轴承引起。在工业现场中,标签样本的收集是一件艰难的工作,尤其是稀缺的故障样本,但却存在着大量的无标签样本。针对这种只有少量标签数据且类别不平衡的情况,传统的故障诊断算法往往表现很差。此外,轴承一般运行在不确定的变工况下,这也会对故障诊断造成干扰。因此,通过利用无标签数据来提高故障诊断准确率有着十分重要的意义。可视图算法是一种将时序数据转化成复杂网络的方法,该方法将样本中的每一个点当成图中的节点,利用物理可视的原理构建复杂网络。提取网络结构参数作为轴承故障特征,可视图特征对变工况具有天然的不敏感性。半监督学习是一种能利用无标签数据来提高故障诊断准确率的分类算法,该方法只需要少量的标签样本数据,通过求解满足最优平滑假设目标方程的最优解将少量标签传播到所有无标签数据上,实现无标签样本的状态辨识。
技术实现思路
本专利技术提出了一种基于图论的轴承半监督故障诊断方法,首先将信号通过可视本文档来自技高网...

【技术保护点】
1.一种基于图论的轴承半监督故障诊断方法,其特征在于,具体包括以下步骤:(一)首先利用可视图算法将通过传感器得到的轴承原始振动加速度信号转换成复杂网络;(二)计算复杂网络的结构参数,提取度分布的均值和标准差及网络复杂指数;(三)最后利用基于图的半监督学习处理无标签样本,实现轴承故障诊断。

【技术特征摘要】
1.一种基于图论的轴承半监督故障诊断方法,其特征在于,具体包括以下步骤:(一)首先利用可视图算法将通过传感器得到的轴承原始振动加速度信号转换成复杂网络;(二)计算复杂网络的结构参数,提取度分布的均值和标准差及网络复杂指数;(三)最后利用基于图的半监督学习处理无标签样本,实现轴承故障诊断。2.如权利要求1所述的方法,其特征在于,步骤(一)采用可视图算法具体为:针对一个具有N个数据点的样本,首先通过如下方法将振动加速度信号转化成可视图:信号的任意两点(ta,xa),(tb,xb),对应可视图中的两个节点,设这两点之间任意一点为(tc,xc),两个节点相连接的条件满足得到形容每个节点的连接情况邻接矩阵WD,矩阵WD为N*N维的对称矩阵,wij=1代表节点i与节点j相连;对于任意一点,与其连接点的个数称为该点的度则度分布为DV=[d1,…,dn]。3.如权利要求2所述的方法,其特征在于,步骤(二)复杂网络的结构特征参数具体计算方法如下:(1)度分布均值:(2)度分布标准差:(3)图复杂指数GIC定义如下:C=4c(1-c)其中,λmax表示可视图邻接矩阵的最大特征值。4.如权利要求3所述的方法,其特征在于,步骤(三)实现轴承故障诊断的具体方法如下:(1)图的构建首先,通过核函数计算所有样本之间的相似度,计算得到点xi和xj之间邻接矩阵K:K∈Rn×n,Kij=k(xi,xj),通过将邻接矩阵乘以二值矩阵B∈Bn×n和距离矩阵H∈Rn×n完成稀疏化:稀疏化邻接矩阵后,通过高斯...

【专利技术属性】
技术研发人员:王志鹏陈欣安贾利民张蛰秦勇王宁耿毅轩
申请(专利权)人:北京交通大学
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1