用于交叉轴传动的凸-凸啮合纯滚动螺旋锥齿轮机构制造技术

技术编号:18932419 阅读:16 留言:0更新日期:2018-09-15 09:33
本发明专利技术提供一种用于交叉轴传动的凸‑凸啮合纯滚动螺旋锥齿轮机构,包括小轮和大轮组成一对传动副,小轮通过输入轴与驱动器固连,大轮连接输出轴,小轮轴线和大轮轴线交叉,小轮圆锥体外表面设有n1条均匀分布的螺旋圆弧齿,所有螺旋圆弧齿的中心线均为等升距圆锥螺旋线,螺旋圆弧齿与小轮圆锥体外表面之间有过渡圆角,大轮圆锥体外表面设有n2条均匀分布的螺旋圆弧齿,所有螺旋圆弧齿的中心线均为等升距圆锥螺旋线,螺旋圆弧齿与大轮圆锥体外表面之间有过渡圆角,小轮的螺旋圆弧齿和大轮的螺旋圆弧齿啮合方式为点接触的纯滚动啮合传动。本发明专利技术的有益效果:传动效率高、重合度大、承载能力强,可广泛应用于不易润滑的微小、微机械和常规机械领域。

Convex convex engagement pure spiral bevel gear mechanism for cross shaft transmission

The invention provides a cam-cam meshing pure rolling spiral bevel gear mechanism for cross-shaft transmission, which comprises a pair of transmission pairs composed of a small wheel and a large wheel. The small wheel is fixed with the driver through the input shaft, the large wheel is connected with the output shaft, the small wheel axis and the large wheel axis are intersected, and the outer surface of the small wheel cone is provided with N1 spiral circles uniformly distributed. The center line of all spiral circular arc teeth is a conical helix of equal elevation. There is a transition fillet between the spiral circular arc teeth and the outer surface of the Small-Wheel cone. There are N2 uniformly distributed spiral circular arc teeth on the outer surface of the large-wheel cone. The center line of all spiral circular arc teeth is a conical helix of equal elevation. There is a transition fillet between the outer surface of the cone. The meshing mode of the spiral circular arc teeth of the small wheel and the spiral circular arc teeth of the large wheel is the pure rolling meshing transmission with point contact. The invention has the advantages of high transmission efficiency, large coincidence and strong bearing capacity, and can be widely used in the fields of micro, micro and conventional machinery which are not easy to be lubricated.

【技术实现步骤摘要】
用于交叉轴传动的凸-凸啮合纯滚动螺旋锥齿轮机构
本专利技术涉及锥齿轮传动装置,具体地说是一种用于交叉轴传动的凸-凸啮合纯滚动螺旋锥齿轮机构。
技术介绍
齿轮作为机械核心基础零部件,广泛应用于机床、汽车、机器人、风电、煤矿、航空航天等装备制造业领域和国民经济主战场,其性能优劣直接决定着重大装备和高端工业产品的质量、性能和可靠性。目前我国齿轮行业面临的主要问题是高效率、大承载能力、轻量化、高可靠性的高性能齿轮产品的设计和制造能力明显不足。在工业生产制造领域广泛应用的传统直齿轮、斜齿轮和锥齿轮副始终未曾彻底解决因齿面相对滑动所带来的摩擦磨损、胶合、塑性变形等传动失效问题,严重影响了齿轮产品尤其是高速重载齿轮的传动效率、使用寿命和可靠性,制约了“高尖精”机械装备的性能提升。减小齿面磨损的常用方式是使用润滑油、润滑脂等润滑剂,但在某些极端环境下,如高温、低温、高压、强辐射等环境,这些润滑剂会失效。而且,为改善齿面磨损而配备的齿轮润滑系统增加了整机成本和重量,同时润滑油、润滑脂的排放也对环境造成污染。现代装备制造业“轻量化、模块化、智能化”的发展趋势,对齿轮传动性能、重量、体积和齿轮绿色设计及制造提出了更高要求。如何实现资源节约、环境友好的高性能齿轮机构绿色设计与制造,降低或避免齿面相对滑动引发的传动失效,进一步提高传动效率和承载能力,是目前齿轮研究领域重要而迫切的问题之一。纯滚动啮合齿面的设计对齿轮传动尤其是对高速、重载、精密齿轮传动而言意义重大,它可以有效降低甚至消除齿面间的相对滑动,由此引发的齿面摩擦磨损、胶合、塑性变形等传动失效也将得到有效控制,不仅能降低高速齿轮齿面间的摩擦损耗,减小发热和振动,还能提高齿轮传动寿命,提升传动效率,确保传动精度和平稳性,具有更好的齿面啮合性能,对提升齿轮副和轮系的综合性能具有极大的积极作用。目前平面内两交叉轴之间的运动和动力的传递,工业应用最广泛的是渐开线锥齿轮机构。但渐开线锥齿轮机构的啮合原理遵循曲面啮合理论,从设计理论上就必然存在齿面之间的相对滑动,因此不能避免齿面磨损、齿面胶合和齿面塑性变形等齿轮传动的普遍失效形式,影响了齿轮副的使用寿命和可靠性。近年来,国内外在齿轮啮合理论领域创新出具有原创性特色新型的微小传动机构。如中国专利文献,申请号为201510054843.4,公开了“用于平行轴外啮合传动的螺旋圆弧齿轮机构”,申请号为201510051923.4,公开了“用于平行轴内啮合传动的螺旋圆弧齿轮机构”。上述两种传动机构的局限性在于,它们的设计方法基于空间曲线啮合理论,啮合齿面依赖于曲线啮合方程计算求解,啮合方式为凸-凸啮合形式,啮合点位于凹齿齿廓的边缘,传动时由于边缘接触,会产生过大的局部应力,容易引发凹齿齿顶断裂造成传动失效,不能用于工业生产的常规动力和高速重载传动。此外,上述两种机构的设计方法不能实现重合度的严格设计,使得传动副的重合度数值不确定,不利于载荷的均布。而且,它们只能实现平面内两平行轴之间的运动和动力传递,不能实现平面内两正交轴之间的运动和动力的传递。因此,它们使用范围受到了极大的限制。中国专利文献,申请号为201310049845.5,公开了“基于共轭曲线的锥齿轮啮合副”,包括相互点啮合且齿廓曲线均为圆弧的锥齿轮I和锥齿轮II,该锥齿轮机构具有传动效率高;齿面易于加工制造,传动误差小,使用寿命长的特点;但该锥齿轮也存在锥齿轮I和锥齿轮II啮合时齿面沿着共轭曲线运动,因此齿面间存在相对滑动,齿面有胶合、磨损和塑性变形等失效形式。
技术实现思路
本专利技术的目的是针对目前机械传动领域现有技术存在的问题,而提出一种用于平面任意角度交叉轴传动的凸-凸啮合纯滚动锥齿轮及其设计方法,具有设计简单,易于加工,传动时齿面间无相对滑动,传动效率高、重合度可实现预定义设计、承载能力强等优点,可广泛应用于不易润滑的微小、微机械和常规机械领域。为了实现上述目的,本专利技术采取的技术措施是:用于交叉轴传动的凸-凸啮合纯滚动螺旋锥齿轮机构,包括小轮和大轮组成一对传动副,小轮通过输入轴与驱动器固连,大轮连接输出轴,小轮和大轮的轴线交叉,其特征在于:所述的小轮圆锥体外表面均布有螺旋圆弧齿,大轮圆锥体外表面也均布有螺旋圆弧齿,螺旋圆弧齿的中心线均为等升距圆锥螺旋线,小轮和大轮上的螺旋圆弧齿配合;所述螺旋圆弧齿与小轮、大轮圆锥体外表面之间有过渡圆角以减小齿根应力集中;所述的小轮和大轮上的螺旋圆弧齿啮合方式为点接触的纯滚动啮合传动,小轮在驱动器的带动下旋转,通过大小轮上的螺旋圆弧齿之间的连续啮合作用,实现交叉轴之间的平稳啮合传动,所有啮合点位于小轮和大轮理论分度圆锥体的切线,所有啮合点的相对运动速度均为零,并且啮合点在小轮和大轮上分别形成的接触线均为等升距圆锥螺旋线;所述小轮和大轮上的螺旋圆弧齿的结构及其中心线的形状由如下方法确定:在o--x,y,z、ok--xk,yk,zk及op--xp,yp,zp三个空间坐标系中,z轴与小轮的回转轴线重合,zp轴与大轮的回转轴线重合,zk轴与小轮和大轮的啮合线重合,z轴与zp、zk轴相交于一点;坐标系o1--x1,y1,z1与小轮固联,坐标系o2--x2,y2,z2与大轮固联,小轮、大轮在起始位置分别与坐标系o--x,y,z及op--xp,yp,zp重合,ook距离为R1,opok距离为R2,zk轴与z轴所夹锐角为δ1,zk轴与zp轴所夹锐角为δ2,小轮以匀角速度ω1绕z轴旋转,大轮以匀角速度ω2绕zp轴旋转,小轮和大轮回转轴线的角速度矢量夹角为θ,从起始位置经一段时间后,坐标系o1--x1,y1,z1及o2--x2,y2,z2分别运动,此时啮合点为M,小轮绕z轴转过角,大轮绕zp轴转过角;当小轮和大轮啮合传动时,啮合点M从坐标原点ok开始沿啮合线k-k匀速直线运动,定义M点运动的参数方程为:式(1)中t为啮合点M的运动参数变量,0≤t≤Δt;c1为啮合点运动待定系数,单位为毫米(mm);为了确保小轮与大轮的纯滚动啮合,小轮和大轮的转角与啮合点的运动必须是线性关系,它们的关系式如下:式(2)中k为啮合点运动的线性比例系数,单位为弧度(rad);i12为小轮与大轮之间的传动比;当啮合点M沿啮合线k-k运动时,点M同时在小轮和大轮齿面分别形成接触线C1和C2;根据坐标变换,可以得到坐标系o--x,y,z、ok--xk,yk,zk、op--xp,yp,zp、o1--x1,y1,z1和o2--x2,y2,z2之间的齐次坐标变换矩阵为:其中:求得:由式(6)根据齐次坐标变换,求得:由式(8)求得到小轮齿面上接触线C1为等升距圆锥螺旋线,它的参数方程为:把式(2)带入式(9)求得:式(10)中T为等升距圆锥螺旋线的角度参数变量,T=kt,且0≤T≤ΔT;由式(7)根据齐次坐标变换,求得:由式(11)求得到大轮齿面上接触线C2为等升距圆锥螺旋线,它的参数方程为:把式(2)带入式(12)求得:而小轮与大轮的传动比为:把式(14)代入式(13)求得:小轮和大轮的理论分度圆锥角分别为δ1与δ2,它们的关系式为:小轮螺旋圆弧齿的凸齿面由包含啮合点M的轴向圆弧齿形截形L1通过右旋螺旋运动生成,圆弧齿形截形L1为小轮齿面的产形母线,其螺旋运动的轴向螺距参数与接触线C1的轴本文档来自技高网
...

【技术保护点】
1.用于交叉轴传动的凸‑凸啮合纯滚动螺旋锥齿轮机构,包括小轮和大轮组成一对传动副,所述小轮通过输入轴与驱动器固连,所述大轮连接输出轴,所述小轮的轴线和所述大轮的轴线交叉,其特征在于:所述小轮圆锥体外表面设有n1条均匀分布的螺旋圆弧齿,所有螺旋圆弧齿的中心线均为等升距圆锥螺旋线,所述螺旋圆弧齿与所述小轮圆锥体外表面之间有过渡圆角,所述大轮圆锥体外表面设有n2条均匀分布的螺旋圆弧齿,所有螺旋圆弧齿的中心线均为等升距圆锥螺旋线,所述螺旋圆弧齿与所述大轮圆锥体外表面之间有过渡圆角,所述小轮的螺旋圆弧齿和所述大轮的螺旋圆弧齿啮合方式为点接触的纯滚动啮合传动,通过所述大轮上的螺旋圆弧齿与所述小轮上的螺旋圆弧齿之间的连续啮合作用,带动所述大轮转动,所述小轮的螺旋圆弧齿结构和所述大轮的螺旋圆弧齿结构由如下方法确定:S1构建坐标系,定义所述小轮和所述大轮与各坐标系的位置关系:构建o‑‑x,y,z、ok‑‑xk,yk,zk及op‑‑xp,yp,zp三个空间坐标系,使z轴与所述小轮的回转轴线重合,zp轴与所述大轮的回转轴线重合,zk轴与所述小轮和所述大轮的啮合线重合,z轴与zp、zk轴相交于一点,构建与所述小轮固联的坐标系o1‑‑x1,y1,z1,与所述大轮固联的坐标系o2‑‑x2,y2,z2,所述小轮和所述大轮在起始位置分别与坐标系o‑‑x,y,z及op‑‑xp,yp,zp重合,ook距离为R1,opok距离为R2,zk轴与z轴所夹锐角为δ1,zk轴与zp轴所夹锐角为δ2,所述小轮以匀角速度ω1绕z轴旋转,所述大轮以匀角速度ω2绕zp轴旋转,所述小轮和所述大轮回转轴线的角速度矢量夹角为θ,从起始位置经一段时间后,坐标系o1‑‑x1,y1,z1及o2‑‑x2,y2,z2分别运动,此时啮合点为M,所述小轮绕z轴转过...

【技术特征摘要】
1.用于交叉轴传动的凸-凸啮合纯滚动螺旋锥齿轮机构,包括小轮和大轮组成一对传动副,所述小轮通过输入轴与驱动器固连,所述大轮连接输出轴,所述小轮的轴线和所述大轮的轴线交叉,其特征在于:所述小轮圆锥体外表面设有n1条均匀分布的螺旋圆弧齿,所有螺旋圆弧齿的中心线均为等升距圆锥螺旋线,所述螺旋圆弧齿与所述小轮圆锥体外表面之间有过渡圆角,所述大轮圆锥体外表面设有n2条均匀分布的螺旋圆弧齿,所有螺旋圆弧齿的中心线均为等升距圆锥螺旋线,所述螺旋圆弧齿与所述大轮圆锥体外表面之间有过渡圆角,所述小轮的螺旋圆弧齿和所述大轮的螺旋圆弧齿啮合方式为点接触的纯滚动啮合传动,通过所述大轮上的螺旋圆弧齿与所述小轮上的螺旋圆弧齿之间的连续啮合作用,带动所述大轮转动,所述小轮的螺旋圆弧齿结构和所述大轮的螺旋圆弧齿结构由如下方法确定:S1构建坐标系,定义所述小轮和所述大轮与各坐标系的位置关系:构建o--x,y,z、ok--xk,yk,zk及op--xp,yp,zp三个空间坐标系,使z轴与所述小轮的回转轴线重合,zp轴与所述大轮的回转轴线重合,zk轴与所述小轮和所述大轮的啮合线重合,z轴与zp、zk轴相交于一点,构建与所述小轮固联的坐标系o1--x1,y1,z1,与所述大轮固联的坐标系o2--x2,y2,z2,所述小轮和所述大轮在起始位置分别与坐标系o--x,y,z及op--xp,yp,zp重合,ook距离为R1,opok距离为R2,zk轴与z轴所夹锐角为δ1,zk轴与zp轴所夹锐角为δ2,所述小轮以匀角速度ω1绕z轴旋转,所述大轮以匀角速度ω2绕zp轴旋转,所述小轮和所述大轮回转轴线的角速度矢量夹角为θ,从起始位置经一段时间后,坐标系o1--x1,y1,z1及o2--x2,y2,z2分别运动,此时啮合点为M,所述小轮绕z轴转过角,所述大轮绕zp轴转过角;S2确定啮合点M的运动参数方程:当所述小轮和所述大轮啮合传动时,啮合点M从坐标原点ok沿啮合线k-k匀速直线运动,定义M点运动的参数方程为:式中t为啮合点M的运动参数变量,0≤t≤Δt;c1为啮合点运动待定系数,所述小轮与所述大轮的纯滚动啮合,确定所述小轮和所述大轮的转角与啮合点的运动必须是线性关系,关系式如下:式中k为啮合点运动的线性比例系数,i12为小轮与大轮之间的传动比;S3确定啮合点M的运动参数变量t的取值范围Δt:由所述小轮和大轮组成传动副的合度设计计算公式求得S4确定所述小轮齿面上接触线C1和所述大轮齿面上接触线C2的参数方程:当啮合点M沿啮合线k-k运动时,点M同时在小轮和大轮齿面分别形成接触线C1和C2,根据坐标变换,可以得到坐标系o--x,y,z、ok--xk,yk,zk、op--xp,yp,zp、o1--x1,y1,z1和o2--x2,y2,z2之间的齐次坐标变换矩阵为:齐次坐标变换分别求得所述小轮齿面上接触线C1和所述大轮齿面上接触线C2的参...

【专利技术属性】
技术研发人员:陈祯丁华锋曾鸣杨静
申请(专利权)人:中国地质大学武汉
类型:发明
国别省市:湖北,42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1