一种可穿戴全息传送系统技术方案

技术编号:18615449 阅读:77 留言:0更新日期:2018-08-05 00:31
本发明专利技术克服传统心率传感器特别是石墨烯心率传感系统的缺陷,提供了一种具有量程范围大,灵敏度高的石墨烯心率传感系统的可穿戴全息传送系统,用于将用户的心率数据反馈给VR环境,以便于在VR环境中更真切地增强用户体验。传感器具有灵活性高,制作工艺简单,生产规模大,成本低等优点。本文提出的石墨烯心率传感器具有出色的灵敏度和较大的工作范围,在较低压和较高压范围内都能有良好的线性度。

【技术实现步骤摘要】
一种可穿戴全息传送系统
本专利技术属于虚拟现实领域,具体涉及一种可穿戴全息传送系统。
技术介绍
柔性力学器件近些年来受到了学术界和产业界的广泛关注。相比传统硬质基底器件,柔性力学器件在不牺牲性能的基础上,大大提升了器件的可变形性,从而使其能够适应更为复杂的应用场景,尤其适合可穿戴应用。石墨烯,是从石墨中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。它是人们发现的第一种由单层原子构成的材料。石墨烯虽然很薄,但却是非常强韧的材料,同时,它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。石墨烯材料自2004年被发现以来,得益于其独特的电学、力学等特性,被广泛应用于柔性力学器件中,石墨烯力学器件具有很高的灵敏度。然而,现有石墨烯力学传感器存在制备工艺复杂、重复性与一致性较差、良品率低等缺点与问题。传统的压力传感器不能同时实现高灵敏度和大的工作范围,导致其在的应用有限。迫切需要开发新型的压力传感器,在灵敏度和工作范围两方面同时取得突破。目前已有多种采用石墨烯的压力传感器,2012年,A.D.Smith等人完整提出了悬浮石墨烯压力传感器的结构,如图1所示,而该压力传感器中,由于二氧化硅与碳化硅基底的性质远不如石墨烯的内在性质,这对传感器的结构与功能会产生局限性。且受薄膜厚度影响,其通常为单层石墨烯厚度的几千倍,传感器灵敏度也受影响,低压领域不适用。O.K.Kwon等人提出了改进型悬浮石墨烯压力传感器,如图所示,这种压力传感器增加了一个带有圆柱形支腿的顶板,通过支腿传递作用在石墨烯薄膜上的压力将迅速变大。这种改进型的压力传感器可用于低压检测环境,灵敏度极高,且低压范围线性度很好,但其缺点是高压范围线性度较差,并且结构尺寸大于一般悬浮石墨烯压力传感器。J.Ma等人研究了一种光纤石墨烯压力传感器,其是通过熔融石英毛细管到单模光纤的末端,在内部施加气压后毛细管逐渐变细,然后熔融毛细管形成气腔。石墨烯薄膜覆盖在圆柱形空腔上,不但可以检测外部压力变化,而且可以对空腔起到密封作用。这种压力传感器结构紧凑,机械强度良好。但缺点是工作压力较低,压力灵敏度不高,密封空腔内气体会有轻微泄漏。
技术实现思路
鉴于以上分析,本专利技术的主要目的在于提供一种具有量程范围大,灵敏度高的石墨烯心率传感系统的可穿戴全息传送系统,用于将用户的心率数据反馈给VR环境,以便于在VR环境中更真切地增强用户体验。传感器具有灵活性高,制作工艺简单,生产规模大,成本低等优点。本文提出的石墨烯心率传感器具有出色的灵敏度和较大的工作范围,在较低压和较高压范围内都能有良好的线性度。本专利技术的目的是通过以下技术方案实现的。一种可穿戴的全息传送系统,包括石墨烯心率传感系统,其中该传感系统包括多层结构,由上至下依次是基板层、压敏材料层、基底层。进一步地,在所述基板层和压敏材料层中还设置有第一压感电极层,在所述压敏材料层和基底层中还设置有第二压感电极层。进一步地,所述压敏材料层由石墨烯制成。进一步地,所述压感电极层为金属氧化物导电层。进一步地,所述基板层和基底层为弹性孔状织物层。进一步地,所述压敏材料层的具体形成步骤为:将烧杯至于冷水中,加入23ml浓硫酸,控制温度为0℃;搅拌下加入1g石墨粉和0.5g硝酸钠的固体混合物;再分次加入3g高锰酸钾,控制反应温度不超过20℃;高锰酸钾加完后移去水浴,然后加热到35℃左右,继续搅拌30min,再缓慢加入去离子水,高温加热到90度,反应15min,温水稀释到140ml,并加入适量30%双氧水使溶液变为亮黄色,称取上述制品0.05g加入到100mLpH=11的NaOH溶液中;在150W下超声90min制备分散液,在高转速下除去未剥离的氧化石墨;向氧化石墨烯分散液中加入0.1mL水合肼,在90℃反应2h,得到石墨烯分散液,将所述分散液沉积至细孔过滤装置上,利用真空吸滤的方法,得到石墨烯材料层,再将得到的石墨烯层吹干,得到所需厚度的石墨烯层。本专利技术的技术方案具有以下优点:本文提出的石墨烯心率传感器具有出色的灵敏度和较大的工作范围,在较低压和较高压范围内都能有良好的线性度。经实测表明,本专利技术的心率传感器在压力范围为20kPa,超高灵敏度为17.2kPa-1(0Pa-2kPa)时具有显著的性能。附图说明图1为本专利技术的具有石墨烯心率传感系统的可穿戴全息传送系统。图2是本专利技术实施例1所述的石墨烯心率传感系统的结构图。其中1为基板层,2为第一压感电极层,3为压敏材料层,4为第二压感电极层,5为基底层。具体实施方式实施例一如图1所示,根据本专利技术的实施例,提供了一种可穿戴的全息传送系统10,包括石墨烯心率传感系统20,其中该传感系统包括多层结构。参见图2,为本专利技术的石墨烯心率传感系统结构图。在所述基板层和压敏材料层中还设置有第一压感电极层,在所述压敏材料层和基底层中还设置有第二压感电极层。所述压敏材料层由石墨烯制成。所述压感电极层由有机高分子材料制成。所述基板层和基底层为弹性孔状织物层。所述压敏材料层的具体形成步骤为:将烧杯至于冷水中,加入23ml浓硫酸,控制温度为0℃;搅拌下加入1g石墨粉和0.5g硝酸钠的固体混合物;再分次加入3g高锰酸钾,控制反应温度不超过20℃;高锰酸钾加完后移去水浴,然后加热到35℃左右,继续搅拌30min,再缓慢加入去离子水,高温加热到90度,反应15min,温水稀释到140ml,并加入适量30%双氧水使溶液变为亮黄色,称取上述制品0.05g加入到100mLpH=11的NaOH溶液中;在150W下超声90min制备分散液,在高转速下除去未剥离的氧化石墨;向氧化石墨烯分散液中加入0.1mL水合肼,在90℃反应2h,得到石墨烯分散液,将所述分散液沉积至细孔过滤装置上,利用真空吸滤的方法,得到石墨烯材料层,再将得到的石墨烯层吹干,得到所需厚度的石墨烯层材料。所述第一、第二压感电极层为叉指垂直设置,通过这样的设置,通过压力作用时,测量电极之间的变化,以及石墨烯层电阻的变化,可以综合测量出所作用的压力大小,并且,如果事先对电极层进行坐标标定,还可以测量出具体压力作用点,可以增大该压力感测系统的适用范围。实施例二与实施例一相同,实施例二的石墨烯心率传感系统也为多层结构。该心率传感系统由上至下依次是基板层、第一压敏材料层、压感电极层、第二压敏材料层、基底层。所述第一压敏材料层和第二压敏材料层均由石墨烯制成。所述压感电极层为有机高分子材料。所述基板层和基底层为弹性孔状织物层。所述石墨烯的具体形成步骤为:将烧杯至于冷水中,加入23ml浓硫酸,控制温度为0℃;搅拌下加入1g石墨粉和0.5g硝酸钠的固体混合物;再分次加入3g高锰酸钾,控制反应温度不超过20℃;高锰酸钾加完后移去水浴,然后加热到35℃左右,继续搅拌30min,再缓慢加入去离子水,高温加热到90度,反应15min,温水稀释到140ml,并加入适量30%双氧水使溶液变为亮黄色,称取上述制品0.05g加入到100mLpH=11的NaOH溶液中;在150W下超声90min制备分散液,在高转速下除去未剥离的氧化石墨;向氧化石墨烯分散液中加入0.1mL水合肼,在90℃反应2h,得到石墨烯分散液,将所述分散液沉积至细孔过滤装置上,利用真空吸滤的方法,得到石墨烯材料层,再将得到的石墨烯层吹干本文档来自技高网
...

【技术保护点】
1.一种可穿戴的全息传送系统,包括石墨烯心率传感系统,其中该传感系统包括多层结构,由上至下依次是基板层、压敏材料层、基底层。

【技术特征摘要】
1.一种可穿戴的全息传送系统,包括石墨烯心率传感系统,其中该传感系统包括多层结构,由上至下依次是基板层、压敏材料层、基底层。2.如权利要求1所述的可穿戴的全息传送系统,其中在所述基板层和压敏材料层中还设置有第一压感电极层,在所述压敏材料层和基底层中还设置有第二压感电极层。3.如权利要求2所述的可穿戴的全息传送系统,其中所述压敏材料层由石墨烯制成。4.如权利要求3所述的可穿戴的全息传送系统,其中所述压感电极层为金属氧化物导电层。5.如权利要求4所述的可穿戴的全息传送系统,其中所述基板层和基底层为弹性孔状织物层。6.如权利要求5所述的可穿戴的全息传送系统,其中所述压敏材料层的具体形成步骤为:将烧杯至于冷水中,加入23ml浓硫酸,控制温度为0℃;搅拌下加入1g石墨粉和0.5g硝酸钠的固体混合物;再分次加入3g高锰酸钾,控制反应温度不超过20℃;高锰酸钾加完后移去水浴,然后加热到35℃左右,继续搅拌30min,再缓慢加入去离子水,高温加热到90度,反应15min,温水稀释到140ml,并加入适量30%双氧水使溶液变为亮黄色,称取上述制品0.05g加入到100mLpH=11的NaOH溶液中;在150W下超声90min制备分散液,在高转速下除去未剥离的氧化石墨;向氧化石墨烯分散液中加入0.1mL水合肼,...

【专利技术属性】
技术研发人员:周琳陈林瑞
申请(专利权)人:四川东鼎里智信息技术有限责任公司
类型:发明
国别省市:四川,51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1