一种整体式TPS中气凝胶隔热层的热导率分析方法技术

技术编号:18551051 阅读:31 留言:0更新日期:2018-07-28 09:14
本发明专利技术公开一种整体式TPS中气凝胶隔热层的热导率分析方法,包括:测量气凝胶隔热层常压、不同温度的热物性参数;绘制气凝胶隔热层的热导率与温度之间的关系曲线建立其每一分段的带有修正系数的热导率与温度关联式;在不同气压条件下开展对整体式TPS的电弧风洞试验,测绘外防热面板的表面温度随时间变化的表面温升曲线并测绘内辅助面板或金属承载板背面的第一温升曲线;根据电弧风洞试验的试验条件开展仿真计算,绘制金属承载板背面的第二温升曲线;对比相同气压条件下根据电弧风洞试验测绘的第一温升曲线和根据仿真计算绘制的第二温升曲线以通过调整修正系数调整以调整气凝胶隔热层的热导率。本发明专利技术可获得准确的气凝胶隔热层的热导率。

【技术实现步骤摘要】
一种整体式TPS中气凝胶隔热层的热导率分析方法
本专利技术涉及热防护结构
更具体地,涉及一种整体式TPS中气凝胶隔热层的热导率分析方法。
技术介绍
高超声速飞行器长时以高马赫数在大气层内飞行,需要进行热防护设计。为保证热防护方案设计满足总体指标要求,需要根据热防护材料热物性参数开展热防护层厚度、重量分析。如图1所示,整体式TPS(热防护结构)包括外防热面板1、气凝胶隔热层2、内辅助面板3、胶层4和金属承载板5,其中,气凝胶隔热层2包括刚性隔热材料21和缝合纤维22。整体式TPS为多层-多孔类缝合夹层式热防护结构的防隔热一体化设计,通过胶层4与金属承载板5粘接,实现气凝胶隔热层2隔热、外防热面板1和内辅助面板3与隔热材料传载、金属承载板5承载。由于其具有结构力学性能好,结构形式简单,热桥效应小,防热/隔热性能优异特点,其在典型高超声速飞行器外防热结构上得到应用。由于气凝胶隔热层2的材料为多孔半透明介质,存在透射、辐射、气体热传导、固体热传导等多种传热方式,且传热特性受低气压现象影响较大,给气凝胶隔热层2的热导率的测量带来很大困难。气凝胶隔热层2的复合材料热导率极低,室温约0.02W/(m.k),高温约0.08W/(m.k),传统稳态法/瞬态法测量误差对热导率的影响较大,相应的,给热防护结构设计、评估带来很大困难。外表面1000℃,1000s环境条件下,3mm钛合金属承载板5背面与侧面绝热,保证金属承载板5背面温升小于200℃,当气凝胶隔热层2热导率为0.04W/(m.k)与0.08W/(m.k)时计算得到需要的热防护材料厚度分别为21mm与35mm,相差约70%。由此可见,获得整体式TPS的合理准确的热导率对提高热防护结构设计精度具有重要意义。因此,需要提供一种可获得准确的气凝胶隔热层的热导率的整体式TPS中气凝胶隔热层的热导率分析方法。
技术实现思路
本专利技术的目的在于提供一种可获得准确的气凝胶隔热层的热导率的整体式TPS中气凝胶隔热层的热导率分析方法。为达到上述目的,本专利技术采用下述技术方案:一种整体式TPS中气凝胶隔热层的热导率分析方法,包括如下步骤:测量气凝胶隔热层在常压、不同温度条件下的热物性参数,包括密度、比热容和热导率;绘制气凝胶隔热层的热导率与温度之间的关系曲线,对该关系曲线进行分段,将每一分段的视为直线,建立每一分段的带有修正系数的热导率与温度的关联式;在不同气压条件下开展对整体式TPS的电弧风洞试验,测绘不同气压条件下整体式TPS中外防热面板的表面温度随时间变化的的表面温升曲线并测绘不同气压条件下整体式TPS中内辅助面板或金属承载板背面的温度随时间变化的第一温升曲线;根据整体式TPS中气凝胶隔热层测量的热物性参数和其余部件设置的热物性参数对整体式TPS进行仿真建模,并以电弧风洞试验获得的外防热面板表面温度作为边界条件,设定整体式TPS四周及背面绝热,利用一维非稳态导热微分方程开展不同气压条件下的仿真计算,仿真计算时间与电弧风洞试验时间相同;绘制金属承载板背面的温度随时间变化的第二温升曲线;对比相同气压条件下根据电弧风洞试验测绘的第一温升曲线和根据仿真计算绘制的第二温升曲线:若各时刻第一温升曲线和第二温升曲线中的温度值差异小于等于设定阈值则以仿真计算时利用的气凝胶隔热层热导率作为该气压条件下气凝胶隔热层的热导率;若各时刻第一温升曲线和第二温升曲线中的温度值差异大于设定阈值则关联式中的修正系数进行调整以调整气凝胶隔热层的热导率:若第二温升曲线中的温度值大于第一温升曲线中的温度值则减小修正系数,否则增大修正系数;利用根据调整后的关联式得到的气凝胶隔热层热导率重新开展仿真计算直至各时刻第一温升曲线和第二温升曲线中的温度值差异小于等于设定阈值。优选地,测量气凝胶隔热层在常压、不同温度条件下的热物性参数的方法为采用稳态法或瞬态法测量,测量中温度测点的间隔≤200℃。优选地,每一分段的带有修正系数的热导率与温度的关联式为:λ=c(aT+b),λ为热导率,T为温度,a、b分别为常数,c为修正系数。优选地,电弧风洞试验的试验参数及条件为:采用两个内置热电偶分别测量整体式TPS中外防热面板及内辅助面板温度变化,两个内置热电偶分别距外防热面板、内辅助面板的距离≤0.5mm;采用单一状态进行试验,试验时间保证外防热面板表面温度处于平衡状态;整体式TPS厚度≥10mm,外防热面板和内辅助面板的厚度均≤2mm;热电偶位置距整体式TPS边缘≥40mm;整体式TPS与试验工装缝隙填充隔热材料进行密封,隔热材料热导率≤0.06W/(m.k);整体式TPS与试验工装四周缝隙尺寸≥1mm,金属承载板背面填充的隔热材料厚度≥10mm,与试验工装热导率≤30W/(m.k);对于测量金属承载板背面的温度变化,金属承载板边缘距整体式TPS边缘距离≥5mm;胶层、金属承载板的厚度与热物性参数均已知,胶层粘接界面接触完好。优选地,所述一维非稳态导热微分方程为其中,λ为热导率,T为温度,ρ为密度,cp为比热容,t为时间。优选地,所述设定阈值为5℃。本专利技术的有益效果如下:本专利技术所述技术方案可获得准确的气凝胶隔热层的热导率,进而提高热防护结构设计精度,可有效降低热防护结构设计余量与结构重量比,提高高超声速飞行器总体性能。附图说明下面结合附图对本专利技术的具体实施方式作进一步详细的说明;图1示出整体式TPS的示意图。图2示出整体式TPS中气凝胶隔热层的热导率分析方法的流程图。图3示出电弧风洞试验的试验条件示意图。具体实施方式为了更清楚地说明本专利技术,下面结合优选实施例和附图对本专利技术做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本专利技术的保护范围。本实施例提供的整体式TPS中气凝胶隔热层的热导率分析方法也可以称为缝合夹层式多层-多孔整体式TPS不同气压环境条件下气凝胶隔热层热导率分析方法,如图2所示,包括如下步骤:第一步、测量整体式TPS中的外防热面板1、内辅助面板3和气凝胶隔热层2在常压、不同温度条件下的热物性参数,热物性参数包括密度、比热容和热导率;其中,由于气凝胶隔热层2传热特性受低气压现象影响较大,本实施例重点关注的是气凝胶隔热层2的热物性参数。测量的方法具体是采用稳态法或瞬态法分别对外防热面板1、内辅助面板3和气凝胶隔热层2在常压、不同温度条件下的密度、比热容和热导率进行测量,测量中温度测点的间隔≤200℃。第二步、根据第一步的测量结果并在考虑了测量误差后,绘制气凝胶隔热层2的热导率与温度之间的关系曲线,对该关系曲线进行分段,将每一分段的视为直线,建立每一分段的带有修正系数的热导率与温度的关联式,λ=c(aT+b),λ为热导率,T为温度,a、b分别为常数,c为修正系数。第三步、在不同气压条件下开展对整体式TPS的电弧风洞试验,测绘不同气压条件下外防热面板1的表面温度随时间变化的的表面温升曲线并测绘不同气压条件下内辅助面板3或金属承载板5背面的温度随时间变化的第一温升曲线。如图3所示,电弧风洞试验的试验参数及条件为:采用两个内置热电偶分别测量整体式TPS中外防热面板1及内辅助面板3的温度变化,两个内置热电偶分别距外防热面板1、内辅助面板3的距本文档来自技高网
...

【技术保护点】
1.一种整体式TPS中气凝胶隔热层的热导率分析方法,其特征在于,包括如下步骤:测量气凝胶隔热层在常压、不同温度条件下的热物性参数,包括密度、比热容和热导率;绘制气凝胶隔热层的热导率与温度之间的关系曲线,对该关系曲线进行分段,将每一分段的视为直线,建立每一分段的带有修正系数的热导率与温度的关联式;在不同气压条件下开展对整体式TPS的电弧风洞试验,测绘不同气压条件下整体式TPS中外防热面板的表面温度随时间变化的的表面温升曲线并测绘不同气压条件下整体式TPS中内辅助面板或金属承载板背面的温度随时间变化的第一温升曲线;根据整体式TPS中气凝胶隔热层测量的热物性参数和其余部件设置的热物性参数对整体式TPS进行仿真建模,并以电弧风洞试验获得的外防热面板表面温度作为边界条件,设定整体式TPS四周及背面绝热,利用一维非稳态导热微分方程开展不同气压条件下的仿真计算,仿真计算时间与电弧风洞试验时间相同;绘制金属承载板背面的温度随时间变化的第二温升曲线;对比相同气压条件下根据电弧风洞试验测绘的第一温升曲线和根据仿真计算绘制的第二温升曲线:若各时刻第一温升曲线和第二温升曲线中的温度值差异小于等于设定阈值则以仿真计算时利用的气凝胶隔热层热导率作为该气压条件下气凝胶隔热层的热导率;若各时刻第一温升曲线和第二温升曲线中的温度值差异大于设定阈值则关联式中的修正系数进行调整以调整气凝胶隔热层的热导率:若第二温升曲线中的温度值大于第一温升曲线中的温度值则减小修正系数,否则增大修正系数;利用根据调整后的关联式得到的气凝胶隔热层热导率重新开展仿真计算直至各时刻第一温升曲线和第二温升曲线中的温度值差异小于等于设定阈值。...

【技术特征摘要】
1.一种整体式TPS中气凝胶隔热层的热导率分析方法,其特征在于,包括如下步骤:测量气凝胶隔热层在常压、不同温度条件下的热物性参数,包括密度、比热容和热导率;绘制气凝胶隔热层的热导率与温度之间的关系曲线,对该关系曲线进行分段,将每一分段的视为直线,建立每一分段的带有修正系数的热导率与温度的关联式;在不同气压条件下开展对整体式TPS的电弧风洞试验,测绘不同气压条件下整体式TPS中外防热面板的表面温度随时间变化的的表面温升曲线并测绘不同气压条件下整体式TPS中内辅助面板或金属承载板背面的温度随时间变化的第一温升曲线;根据整体式TPS中气凝胶隔热层测量的热物性参数和其余部件设置的热物性参数对整体式TPS进行仿真建模,并以电弧风洞试验获得的外防热面板表面温度作为边界条件,设定整体式TPS四周及背面绝热,利用一维非稳态导热微分方程开展不同气压条件下的仿真计算,仿真计算时间与电弧风洞试验时间相同;绘制金属承载板背面的温度随时间变化的第二温升曲线;对比相同气压条件下根据电弧风洞试验测绘的第一温升曲线和根据仿真计算绘制的第二温升曲线:若各时刻第一温升曲线和第二温升曲线中的温度值差异小于等于设定阈值则以仿真计算时利用的气凝胶隔热层热导率作为该气压条件下气凝胶隔热层的热导率;若各时刻第一温升曲线和第二温升曲线中的温度值差异大于设定阈值则关联式中的修正系数进行调整以调整气凝胶隔热层的热导率:若第二温升曲线中的温度值大于第一温升曲线中的温度值则减小修正系数,否则增大修正系数;利用根据调整后的关联式得到的气凝胶隔热层热导率重新开展仿真计算直至各时刻第一温升曲线和第二温升曲线中的温度值差异小于等于设定阈值。2.根据权利要求1所述...

【专利技术属性】
技术研发人员:张帆陈晓娜宋月娥韩乐马寅魏陈凯刘振祺
申请(专利权)人:北京空天技术研究所
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1