基于主动流动控制技术的飞翼布局飞行器航向控制装置制造方法及图纸

技术编号:18441501 阅读:49 留言:0更新日期:2018-07-14 07:26
本实用新型专利技术公开一种基于主动流动控制技术的飞翼布局飞行器航向控制装置,包括涵道风扇、进气道、上表面前端出气口、上表面后端出气口、后方出气口、下表面前端出气口、下表面后端出气口、后方出气口以及气流导引片,所述涵道风扇和进气道通过螺丝固定在一起,气流导引片布置在飞翼布局飞行器航向控制装置内部的前端和后端。本实用新型专利技术能够通过不同的吹气激励形式,有效实现飞翼布局飞行器的航向控制。本实用新型专利技术的优点:可以代替传统飞翼布局飞行器航向控制部件‑‑开裂式阻力方向舵,实现航向控制的无舵化,且主动流动控制装置的响应速度更快,结构更简单,重量更轻,便于安装和维护。

Flight control device for flying wing configuration aircraft based on active flow control technology

The utility model discloses a flying wing layout control device based on active flow control technology, including a culvert fan, an inlet, an air outlet on the front end of the upper surface, a rear end outlet of the upper surface, a rear air outlet, an air outlet at the front end of the lower surface, a rear end outlet of the lower surface, a rear air outlet and a airflow guide. The culvert fan and the intake port are fixed together through a screw, and the airflow guide is arranged in the front end and the rear end of the flight direction control device of the flying wing layout. The utility model can effectively realize the heading control of the flying wing configuration vehicle by different blowing modes. The utility model has the advantages of replacing the steering control part of the traditional flying wing layout, realizing the rudder of the course control, and the response speed of the active control device is faster, the structure is simpler, the weight is lighter, and the installation and maintenance are convenient.

【技术实现步骤摘要】
基于主动流动控制技术的飞翼布局飞行器航向控制装置
:本技术涉及一种基于主动流动控制技术的飞翼布局飞行器航向控制装置,属于飞行器控制

技术介绍
:相比于常规气动布局的飞行器,无尾飞翼布局具有高升阻比、大航程、重量轻以及低雷达散射面积等优势,但同时因为缺少垂尾,其航向静稳定性不足,导致了航向控制困难。常规飞翼布局的航向控制依靠开裂式阻力方向舵的偏转,产生非对称气动阻力,从而产生偏航力矩,但其偏航力矩增量随舵偏角的变化呈非线性特性,且在较大迎角时会产生操纵反效现象,诱发航向振荡,产生飞行事故。同时舵面的存在会带来诸多问题,除了增大了飞机的整机重量,检修复杂之外,还增大了雷达散射面积,降低了飞行器的隐身性能,高速情况下还会带来气动加热效应,产生舵面烧蚀现象。飞翼布局的航向控制方式一直是一个问题,促使我们不断探寻新的控制技术和手段来实现。近年来随着流动控制技术的发展,尤其是主动流动控制技术不断取得新的进展,主动流动控制技术被提出应用于飞行姿态控制。主动流动控制是在物体流场中直接施加适当的扰动模式并与流动的内在模式相耦合来实现对流动的控制。它的主要作用形式有吹气和吸气、微吹气或微射流、零质量射流、等离子体等。主动流动控制的优势在于它能在需要的时间和部位出现,通过局部能量输入,获得局部或全局的有效流动改变,进而使飞行器飞行性能显著改善。开裂式阻力方向舵通过一侧上下两片舵面的偏转张开(张开的最大设计角度可达90°),使流经机翼表面的气流折转方向,并在舵面之后发生分离,从而产生作用在开裂式阻力方向舵上的阻力和侧力,且气动力作用点通常位于重心之后,因此侧力和阻力产生同一方向的偏航力矩。基于上述原理,我们思考能否应用主动流动控制技术,也使流经机翼表面的气流发生分离,产生阻力、侧力及偏航力矩,以此来取代开裂式阻力方向舵。
技术实现思路
:本技术是为了解决上述现有技术存在的问题而提供一种基于主动流动控制技术的飞翼布局飞行器航向控制装置,该装置可以取代常规飞翼布局飞行器航向姿态控制所用的开裂式阻力方向舵,消除舵面带来的不利影响,应用主动流动控制技术对飞翼布局飞行器的航向姿态进行有效控制。本技术所采用的技术方案有:一种基于主动流动控制技术的飞翼布局飞行器航向控制装置,包括涵道风扇、进气道、上表面前端出气口、上表面后端出气口、后方出气口、下表面前端出气口、下表面后端出气口、后方出气口以及气流导引片,所述涵道风扇和进气道通过螺丝固定在一起,所述气流导引片布置在飞翼布局飞行器航向控制装置内部的前端和后端。进一步地,开启涵道风扇后,气流从进气道进入,沿着分布在飞翼布局飞行器航向控制装置内部的气流导引片喷出,所述气流导引片使气流对称的从飞翼布局飞行器航向控制装置的上下表面向前方喷出,气流出射方向与翼型弦线方向成20°、40°、60°、80°;或者使气流对称的从飞翼布局飞行器航向控制装置的上下表面向后方喷出,气流出射方向与翼型弦线方向成20°、40°、60°、80°;或者气流从后缘出气口喷出,气流出射方向与翼型弦线方向水平,并指向后方。进一步地,飞翼布局飞行器进行偏航操纵时,有五种不同的主动流动控制方式控制航向姿态,分别是前后端同角度对称吹气,仅前端同角度对称向前吹气,仅后端同角度对称向后吹气,仅后缘向后喷气,前后端不同角度组合吹气。进一步地,还包括将飞翼布局飞行器航向控制装置布置在其机翼上的飞翼布局飞行器。本技术具有如下有益效果:本技术将主动流动控制技术应用于飞行器姿态的控制,设计出一种结构简单、体积小、重量轻且响应快的主动流动控制激励器,与常规航向姿态控制所用的开裂式阻力方向舵相比,降低了整机质量,简化了整机结构,消除了舵面带来的诸多不利影响;同时大大提升了飞行器的隐身性能,推进了飞翼布局飞行器完全无舵化飞行的进程。经过风洞实验和粒子图像测试技术(PIV),在18m/s的风速下,对比带有开裂式阻力方向舵的机翼本体模型和带有本技术的机翼实验模型,得到如下实验结果:(1)本体模型:打开开裂式阻力方向舵,且舵偏角为80°时,偏航力矩产生效果最好。平均偏航力矩增量最大达到0.15,平均阻力增量最大达到0.11,平均侧力增量最大达到0.10,升阻比大幅下降。(2)五种吹气方式均可产生偏航力矩增量,且当仅前端对称同角度向前吹气时,偏航力矩产生效果优于其他几种激励方式(仅前端对称同角度向前吹气>前后端对称同角度吹气>仅后端对称同角度吹气和仅后缘向后喷气);当仅前端对称同角度向前吹气气流偏角为20°时,偏航力矩控制效果优于其他几个气流偏角(气流偏角20°>40°>60°>80°)。当仅前端对称同角度向前吹气且气流偏角为20°时,平均偏航力矩增量最大达到0.12,平均阻力增量最大达到0.06,平均侧力增量最大达到0.08,满足常规开裂式阻力方向舵的要求,且偏航力矩增量、阻力增量和侧力增量随吹气气流偏角的改变,基本成线性变化,有望实现飞翼布局无人机偏航力矩的比例控制。并且仅前端对称同角度向前吹气会造成上下翼面流动的提前分离,形成旋涡,产生阻力侧力,作用机理与开裂式阻力方向舵相同。附图说明:图1是基于主动流动控制技术的飞翼布局飞行器航向控制装置的侧面立体示意图。图2是本技术的整体结构后视图。图3是本技术的涵道风扇吹气示意图。图4是A-A剖面示意图。图5是本技术的五种不同吹气方式示意图。图6是本技术在飞翼布局飞行器上的安装位置示意图。图7是B-B剖面示意图。图8是采用本技术的仅前端对称同角度向前吹气方式后,飞行器阻力、侧力及偏航力矩增量随α的变化曲线图。图9是采用本技术的仅前端对称同角度向前吹气方式后,飞行器阻力、侧力及偏航力矩增量随气流偏角的变化曲线图。图10是采用本技术的仅前端对称同角度向前20°吹气方式时的流线图。图中具体标号为:1.涵道风扇,2.进气道,3.上表面前端出气口,4.上表面后端出气口,5.后方出气口,6.下表面前端出气口,7.下表面后端出气口,8.后方出气口,9.气流导引片,10.前后端同角度对称吹气,11.仅前端同角度对称向前吹气,12.仅后端同角度对称向后吹气,13.仅后缘向后喷气,14.前后端不同角度组合吹气,15.遮挡片,16.飞翼布局飞行器航向控制装置,17.飞翼布局飞行器。具体实施方式:下面结合附图对本技术作进一步的说明。如图1和图2所示,本技术基于主动流动控制技术的飞翼布局飞行器航向控制装置,包括涵道风扇1、进气道2、上表面前端出气口3、上表面后端出气口4、后方出气口5、下表面前端出气口6、下表面后端出气口7、后方出气口8以及气流导引片9,其中涵道风扇1和进气道2通过螺丝固定在一起,气流导引片9布置在飞翼布局飞行器航向控制装置内部的前端和后端。如图3和图4所示,开启涵道风扇后,气流从进气道2进入,沿着分布在飞翼布局飞行器航向控制装置内部的气流导引片9喷出。气流引导片可以使气流对称的从飞翼布局飞行器航向控制装置的上下表面向前方喷出,气流出射方向与翼型弦线方向(指向翼型前缘点)成20°、40°、60°、80°;也可以使气流对称的从飞翼布局飞行器航向控制装置的上下表面向后方喷出,气流出射方向与翼型弦线方向(指向翼型后缘点)成20°、40°、60°、80本文档来自技高网
...

【技术保护点】
1.一种基于主动流动控制技术的飞翼布局飞行器航向控制装置,其特征在于:包括涵道风扇(1)、进气道(2)、上表面前端出气口(3)、上表面后端出气口(4)、后方出气口(5)、下表面前端出气口(6)、下表面后端出气口(7)、后方出气口(8)以及气流导引片(9),所述涵道风扇(1)和进气道(2)通过螺丝固定在一起,所述气流导引片(9)布置在飞翼布局飞行器航向控制装置内部的前端和后端。

【技术特征摘要】
1.一种基于主动流动控制技术的飞翼布局飞行器航向控制装置,其特征在于:包括涵道风扇(1)、进气道(2)、上表面前端出气口(3)、上表面后端出气口(4)、后方出气口(5)、下表面前端出气口(6)、下表面后端出气口(7)、后方出气口(8)以及气流导引片(9),所述涵道风扇(1)和进气道(2)通过螺丝固定在一起,所述气流导引片(9)布置在飞翼布局飞行器航向控制装置内部的前端和后端。2.如权利要求1所述的基于主动流动控制技术的飞翼布局飞行器航向控制装置,其特征在于:开启涵道风扇后,气流从进气道(2)进入,沿着分布在飞翼布局飞行器航向控制装置内部的气流导引片(9)喷出,所述气流导引片(9)使气流对称的从飞翼布局飞行器航向控制装置的上下表面向前方喷出,气流出射方向与翼型弦线方向成20°、40°、60...

【专利技术属性】
技术研发人员:史志伟朱佳晨耿玺董益章周志鹏孙琪杰
申请(专利权)人:南京航空航天大学
类型:新型
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1