一种自适应航线调整方法技术

技术编号:18423939 阅读:35 留言:0更新日期:2018-07-12 01:27
本发明专利技术公开了一种自适应航线调整方法,该方法以相邻航带投影重叠区域边界上最高点处的水平面,作为新的航摄基准面来计算真实旁向重叠率,并通过不断迭代调整,使得航线能够随地形起伏进行自适应调整,从而保证了地面真实旁向重叠率与预期旁向重叠率的一致性,提高了航线设计的可靠性及精度,为航摄作业提高了更加准确的指导。

An adaptive route adjustment method

The invention discloses an adaptive route adjustment method. The method uses the horizontal plane at the highest point on the boundary of the overlapped region on the adjacent aerial belt to calculate the real side overlap rate as a new aerial reference surface, and through continuous iterative adjustment, the route can be adjusted adaptively with the terrain undulation, thus ensuring the ground. The consistency of the real side overlap ratio and the expected overlap rate improves the reliability and accuracy of the route design, and improves the accuracy of the navigation operation.

【技术实现步骤摘要】
一种自适应航线调整方法
本专利技术涉及低空数字摄影测量的航摄任务规划领域,具体涉及一种自适应航线调整方法。
技术介绍
近几年来,利用各类型的无人机进行低空大比例尺寸数码航空摄影测量技术发展快速,长期以来,航空摄影一直是军队和国家测绘部门、气象部门获取国内底面信息的主要手段,航空摄影是一项涉及多组织多工序协调作业的规划设计工程,不仅涉及飞行摄影,而且包括技术性很强的规划设计工作,航空摄影规划设计是航空摄影工作中的一项重要内容,其精度高低、自动化程度和设计速度将直接影响航空摄影的质量和效益。航线设计是航摄任务的重点,现有的航线设计方法中采用的真实旁向重叠率没有顾及地形起伏的影响,不是实际测量中的真实旁向重叠率;且现有技术中,计算真实旁向重叠率的方法都没有准确找到像平面投影的等比线段,则确定的真实重叠率可靠性低,导致确定的航线精度低;此外,因为计算真实旁向重叠率需要新的航摄基准面高程,这是在确定了航线和曝光点位置后才能得到的后验信息,所以真实旁向重叠率的计算是一个不断迭代调整的过程,最终使其达到预期设计值的过程;然而现有技术方案的迭代调整在遇到特殊的高程数值组合,会出现迭代不收敛的情况,导致航线确定效率低下。
技术实现思路
本专利技术为解决现有设计航线方法中的精度低、可靠性低及效率低等技术问题,提出了一种自适应航线调整方法。本专利技术通过下述技术方案实现:一种自适应航线调整方法,包括以下步骤:S1,由测区进入端最大高程值、相机参数和相对航高、初始航摄基准面以及预期旁向重叠率参数,根据中心投影几何计算首条航线到测区边界的距离,据此距离扫描测区得到首条航线起终点,并加入结果列表;S2,预设当前航线;S3,查询上一条航线的航带和当前航线的航带重叠区域边界上的最大高程值,计算真实旁向重叠率;S4,检查真实旁向重叠率是否满足预期,如果不满足则进行航线间距的迭代调整得到新的当前航线,并重复执行步骤S3-S4;如果满足,则将当前航线加入结果列表,继续执行步骤S5;S5,检查当前航线的航带是否已经覆盖到测区的另一端,如果是则输出航线起终点集合结果列表,反之则重复执行步骤S2-S5。进一步,步骤S2具体为:当预设的当前航线为第二条航线时,前面只有一条航线,则根据预期旁向重叠率反算航线间距,据此间距扫描测区得到交点,预设第二条航线;否则根据前两条航线的间距,据此间距扫描测区得到交点,预设当前航线。进一步,步骤S3具体为:根据当前航线的航带和上一条航线的航带重叠区域边界,进行DEM高程查询,获得重叠区域边界上的最大高程值,然后通过下式计算得到真实旁向重叠率P′:P′=Q′/L′=(P-Δh/H)×(1-Δh/H),式中:Q′是新航摄基准面上的投影重叠长度,L′是新航摄基准面上的投影长度;Δh是新航摄基准面与初始航摄基准面的高差,H是相对初始航摄基准面的航摄高度,P是在初始航摄基准面上计算的重叠率,P=Q/L,其中Q为初始航摄基准面上的投影重叠长度,L为初始航摄基准面上的投影长度。具体的,DEM高程查询具体包括以下步骤:(1)在部署DEM数据和提供DEM数据服务之前,预先初始化所有DEM数据,生成头信息文件:即利用GDAL库打开每个DEM数据的GeoTIFF文件,读取仿射变换参数、WKT字符串表示的坐标系、栅格波段数、栅格行列数信息;并将这些信息以及主文件路径写入PAMDataset文件的自定义域中;使用DEM数据时,只需要使头信息文件和GeoTIFF文件位于同一目录下即可;(2)每次程序启动时只需加载所有DEM文件的头信息,并计算出全局的仿射变换参数、地理空间范围和栅格行列数;(3)输入多边形测区的顶点序列,计算出多边形测区的地理空间范围,然后根据测区地理空间范围和全局的仿射变换参数,计算出测区DEM的栅格行列号范围;根据测区的地理空间范围查找出所涉及的DEM文件,并从所涉及的DEM文件中裁剪出子数据集;最后拼接这些子数据集,并填充到测区的DEM栅格行列号范围内,形成组织在内存中的测区DEM数据集;数据读写操作利用GDAL库完成;(4)进行高程查询时,遍历重叠区域的栅格点,利用仿射变换参数反算出地理空间坐标,判断该点是否在重叠区域的边界上,如果在则将该点高程值加入查询结果列表,遍历完毕后返回高程值列表的最大值。进一步,步骤S4具体包括:(1)当N=1时:令ΔB=L×[(1-Δh/H)×PE+Δh/H-P];当N≤Nmax时:如果-ΔPmax<P′-PE<0,则ΔB=1;如果0≤P′-PE<ΔPmax,则ΔB=0;如果P′-PE≥ΔPmax,则当N>Nmax时:如果P′-PE≥0,则ΔB=0;式中:N为迭代次数,Nmax最大迭代次数,ΔPmax为真实旁向重叠率P′与预期旁向重叠率PE之差的阈值,ΔB为迭代调整步长,Δh是新航摄基准面与初始航摄基准面的高差,H是相对初始航摄基准面的航摄高度,PE是预期旁向重叠率,P是在初始航摄基准面上计算的重叠率,是上次迭代和本次迭代查询到的新基准面高程平均值;(2)如果ΔB=0则退出迭代,否则将当前航线调整一个步长ΔB,得到新的当前航线。本专利技术以相邻航带重叠区域边界上最高点处的水平面,作为新的航摄基准面来计算真实旁向重叠率,并通过不断迭代调整,使得航线能够随地形起伏进行自适应调整,从而保证了地面真实旁向重叠率与预期旁向重叠率的一致性,提高了航线设计的可靠性及精度;同时,本专利技术还提出了一种收敛的迭代调整算法,以解决现有迭代不收敛的技术问题,进一步提高了航线设计规划的效率;本专利技术还提出了一种DEM高程查询技术,提高了航摄规划质量和效率。附图说明此处所说明的附图用来提供对本专利技术实施例的进一步理解,构成本申请的一部分,并不构成对本专利技术实施例的限定。在附图中:图1为本专利技术的自适应航线调整方法流程图。具体实施方式为使本专利技术的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本专利技术作进一步的详细说明,本专利技术的示意性实施方式及其说明仅用于解释本专利技术,并不作为对本专利技术的限定。实施例如图1所示,本专利技术的一种自适应航线调整方法,该方法中的测区:判断多边形测区的凹凸性,如果是凹多边形则计算其凸包,来替代原多边形测区作为测区输入值。具体包括以下步骤:S1,确定首条航线:从垂直航线角度的方向进入测区,由测区进入端最大高程值、相机参数和相对航高、初始航摄基准面以及预期旁向重叠率等参数,根据中心投影几何计算首条航线到测区边界的距离,据此距离扫描(利用扫描线算法Bentley-OttmannAlgorithm)测区得到首条航线起终点,并加入结果列表;S2,预设当前航线:根据前两条航线的间距(预设第二条航线时,前面只有一条航线,则根据预期旁向重叠率反算航线间距),据此距离扫描测区得到交点,预设当前航线;S3,确定当前航线:根据当前航线的航带和上一条航线的航带重叠区域边界,进行DEM高程查询,获得重叠区域边界上的最大高程值,然后通过下式计算得到真实旁向重叠率P′:P′=Q′/L′=(P-Δh/H)×(1-Δh/H),式中:Q′是新航摄基准面上的投影重叠长度,L′是新航摄基准面上的投影长度;Δh是新航摄基准面与初始航摄基准面的高差,H是相对初始航摄基准面的航摄高度,P是在初始本文档来自技高网...

【技术保护点】
1.一种自适应航线调整方法,其特征在于,一种自适应航线调整方法,包括以下步骤:S1,由测区进入端最大高程值、相机参数和相对航高、初始航摄基准面以及预期旁向重叠率参数,根据中心投影几何计算首条航线到测区边界的距离,据此距离扫描测区得到首条航线起终点,并加入结果列表;S2,预设当前航线;S3,查询上一条航线的航带和当前航线的航带重叠区域边界上的最大高程值,计算真实旁向重叠率;S4,检查真实旁向重叠率是否满足预期,如果不满足则进行航线间距的迭代调整得到新的当前航线,并重复执行步骤S3‑S4;如果满足,则将当前航线加入结果列表,继续执行步骤S5;S5,检查当前航线的航带是否已经覆盖到测区的另一端,如果是则输出航线起终点集合结果列表,反之则重复执行步骤S2‑S5。

【技术特征摘要】
1.一种自适应航线调整方法,其特征在于,一种自适应航线调整方法,包括以下步骤:S1,由测区进入端最大高程值、相机参数和相对航高、初始航摄基准面以及预期旁向重叠率参数,根据中心投影几何计算首条航线到测区边界的距离,据此距离扫描测区得到首条航线起终点,并加入结果列表;S2,预设当前航线;S3,查询上一条航线的航带和当前航线的航带重叠区域边界上的最大高程值,计算真实旁向重叠率;S4,检查真实旁向重叠率是否满足预期,如果不满足则进行航线间距的迭代调整得到新的当前航线,并重复执行步骤S3-S4;如果满足,则将当前航线加入结果列表,继续执行步骤S5;S5,检查当前航线的航带是否已经覆盖到测区的另一端,如果是则输出航线起终点集合结果列表,反之则重复执行步骤S2-S5。2.根据权利要求1所述的方法,其特征在于,步骤S2具体为:当预设第二条航线时,前面只有一条航线,则根据预期旁向重叠率反算航线间距,据此间距扫描测区得到交点,预设第二条航线;否则根据前两条航线的间距,据此间距扫描测区得到交点,预设当前航线。3.根据权利要求1所述的方法,其特征在于,步骤S3具体为:根据当前航线的航带和上一条航线的航带重叠区域边界,进行DEM高程查询,获得重叠区域边界上的最大高程值,然后通过下式计算得到真实旁向重叠率P′:P′=Q′/L′=(P-Δh/H)×(1-Δh/H),式中:Q′是新航摄基准面上的投影重叠长度,L′是新航摄基准面上的投影长度;Δh是新航摄基准面与初始航摄基准面的高差,H是相对初始航摄基准面的航摄高度,P是在初始航摄基准面上计算的重叠率,P=Q/L,其中Q为初始航摄基准面上的投影重叠长度,L为初始航摄基准面上的投影长度。4.根据权利要求3所述的方法,其特征在于,DEM高程查询具体包括以下步骤:(1)在部署DEM数据和提供DEM数据服务之前,预先初始化所有DEM数据,生成头信息文件:即利用GDAL库打开每个DEM数据的GeoTIF...

【专利技术属性】
技术研发人员:刘夯郭有威任斌王陈陈鹏
申请(专利权)人:成都纵横自动化技术有限公司
类型:发明
国别省市:四川,51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1