基于非线性偏振旋转技术与石墨炔的混合锁模脉冲激光器制造技术

技术编号:18421086 阅读:32 留言:0更新日期:2018-07-11 13:08
一种基于非线性偏振旋转技术与石墨炔的混合锁模脉冲激光器,具有用于输出泵浦光的泵浦源,泵浦源光出射方向依次设置有波分复用器、无源光纤、高增益铒纤、偏振调制器、石墨炔锁模器、隔离器、耦合器;利用非线性偏振旋转技术与石墨炔光学器件混合作用实现超短脉冲的产生,由于石墨炔光学材料具有窄的光学带隙可以作用在近红外区域,另外加上非线性偏振旋转技术共同作用,可以进一步提升超短脉冲激光的输出性能,本实用新型专利技术可实现输出性能更加稳定、体积小、易于集成的高效率脉冲光源。

Mixed mode locked pulse laser based on nonlinear polarization rotation technology and graphite acetylene

A hybrid mode locking pulse laser based on nonlinear polarization rotation technology and graphite acetylene has a pump source for output pump light. The Ura Genhikaru ejection direction includes a wave division multiplexer, a passive optical fiber, a high gain erbium fiber, a polarization modulator, a graphite acetylene mode lock device, a isolator, a coupler and a nonlinear polarization. The combination of rotation technology and graphite acetylene optical device realizes the generation of ultrashort pulse. Due to the narrow optical band gap in the graphite alkyne optical material can be used in the near infrared region and the nonlinear polarization rotation technology is combined, the output performance of the ultra short pulse laser can be further enhanced. The utility model can be realized. The output pulse is more stable, smaller and easier to integrate.

【技术实现步骤摘要】
基于非线性偏振旋转技术与石墨炔的混合锁模脉冲激光器
本技术属于激光器
,具体涉及到一种基于非线性偏振旋转技术与石墨炔的混合锁模脉冲激光器。
技术介绍
超短脉冲激光锁模技术是当前激光物理学,材料科学,纳米技术和生物医学的一个重要研究方法。为了实现大功率输出光纤激光器,在激光
,我们在激光腔内加入可饱和吸收体和一些非线性系数较好的二维材料是获得超短脉冲最常用的方法,如拓扑绝缘体(Bi2Te3、Bi2Se3、Sb2Te3)和二维材料如WS2、MoS2等。这些物质的特点是具有可调的非线性吸收系数,接收与反馈信号光的时间短,并且光通过后对光的损耗较低,所以这些化合物可作为光吸收材料加入到激光器中,因此可以得到高功率、宽波段的混合锁模脉冲光源。近年来,由于石墨炔(graphdiyne)具有良好的半导体性能,以及它的内部电子排列都比较特殊,因此该新型材料有望可以作为新型非线性光学器件而被应用于超短脉冲激光领域。因此,在原有的环形腔内加入石墨炔材料后,由于其和偏振相关隔离器共同作用,能够输出更加稳定的超短脉冲。故可将其作为可饱和吸收材料加入锁模器件中。
技术实现思路
本技术所要解决的技术问题在于克服现有技术的缺陷,提供一种设计合理、结构简单、将非线性偏振旋转技术与石墨炔新型光学材料混合进行锁模、重复频率高、稳定性好、成本低、容易实现的基于非线性偏振旋转技术与石墨炔的混合锁模脉冲激光器。解决上述技术问题采用的技术方案是:具有用于输出泵浦光的泵浦源,泵浦源光出射方向依次设置有波分复用器、无源光纤、高增益铒纤、偏振调制器、石墨炔锁模器、隔离器、耦合器;所述的泵浦源的输出端接波分复用器的a输入端,波分复用器的c输出端接无源光纤和高增益铒纤,高增益铒纤的输出端接偏振调制器,偏振调制器的输出端接石墨炔锁模器,石墨炔锁模器的输出端接隔离器,隔离器的输出端接耦合器的d输入端,耦合器的f输出端输出40%的光用来检测光谱、e输出端输出60%的光进入波分复用器的b输入端,形成一个闭合回路的环形腔。本技术的石墨炔锁模器为:第一单模光纤和第二单模光纤通过法兰盘连接,第一单模光纤的接头与第二单模光纤的接头相对设置,第一单模光纤的接头处设置有石墨炔吸收体。本技术的石墨炔吸收体由石墨炔溶液通过液相沉积法将石墨炔溶液沉积在第一单模光纤接头处。本技术的石墨炔吸收体由石墨炔薄膜通过光学沉积法设置在第一单模光纤接头处。本技术的泵浦源输出的波长为974~980nm。本技术的隔离器为偏振相关隔离器。本技术的耦合器是输出比为40%:60%的2*2耦合器。本技术的隔离器与石墨炔锁模器共同作用构成混合锁模机制。本技术相比于现有技术具有以下优点:1、本技术的脉冲光源采用混合锁模技术产生超短脉冲,不要求增加调制源,可以发生自启动,易于实现;2、本技术中的激光器所有器件的连接方式都采用熔接的方式,熔接损耗小于0.01dB,因此大幅降低了连接损耗,降低了对泵浦源的功率要求,该脉冲光源的制作成本低,结构简单;3、本技术激光器输出的超短脉冲激光的重复频率高、稳定性好易于作为高功率脉冲激光器的震荡光源。附图说明图1是本技术一个实施例的结构示意图。图2图1中石墨炔锁模器6的结构示意图。图3是耦合器8的f输出端通过光电转换器后接入示波器的单个脉冲时域图。图4是耦合器8的f输出端通过光电转换器后接入示波器的时域图。图5是输出光谱图。图6是输出自相关曲线图。图7是输出频谱图。图中:1、泵浦源;2、波分复用器;3、无源光纤;4、高增益铒纤;5、偏振调制器;6、石墨炔锁模器;7、隔离器;8、耦合器。具体实施方式下面结合附图和实施例对本技术做进一步详细说明,但本技术不限于这些实施例。实施例1在图1、2中,本技术基于非线性偏振旋转技术与石墨炔的混合锁模脉冲激光器具有用于输出泵浦光的泵浦源1,本实施例的泵浦源1输出的波长为976nm,泵浦源1光出射方向依次设置有波分复用器2、无源光纤3、高增益铒纤4、偏振调制器5、石墨炔锁模器6、隔离器7、耦合器8;本实施例的波分复用器2双波长为980/1550nm,损耗分别为0.15/0.14dB;隔离度分别为25.92/25.95dB。高增益铒纤4的芯径为4μm,包层直径125μm。耦合器8是输出比为40%:60%的2*2耦合器。泵浦源1的输出端接波分复用器2的a输入端,生成的信号光通过无源光纤3进入高增益铒纤4,本实施例的无源光纤3为单模光纤,高增益铒纤4的输出的信号光进入偏振调制器5,调节偏振控制器5可以改变输出光偏振态,偏振调制器5的输出端接石墨炔锁模器6,本实施例的石墨炔锁模器6由第一单模光纤6-1、第二单模光纤6-3、法兰盘6-2连接构成,第一单模光纤6-1和第二单模光纤6-3通过法兰盘6-2连接,第一单模光纤6-1的接头与第二单模光纤6-3的接头相对设置,第一单模光纤6-1的接头处设置有石墨炔吸收体6-4,由于石墨炔纳米颗粒之间的非线性隐失场相互作用,输出的信号光经过隔离器7,本实施例的隔离器7为偏振相关隔离器,隔离器7的输出的信号光经耦合器8的d输入,40%的信号光从耦合器8的f输出端输出用来检测光谱、60%的信号光从耦合器8的e输出端输出进入波分复用器2的b输入端回到腔内,形成一个闭合回路的环形腔。本实施例中偏振调制器5与隔离器7组合相当于一个可饱和吸收体,调节偏振调制器5可是腔内的光发生非线性偏转效应,当调节偏振调制器5时,由于输出光的脉冲能量强度不同而发生非线性相位移动,再次经过检偏器时,会由于脉冲的不同部分而产生光吸收效应,从而得到超短脉冲。本实施例的隔离器7与石墨炔锁模器6共同作用构成混合锁模机制。本实施例中石墨炔吸收体6-4由石墨炔溶液通过液相沉积法将石墨炔溶液沉积在第一单模光纤6-1接头处,也可以说设置在第二单模光纤6-3接头处,石墨炔吸收体6-4制备过程如下:S1、利用液相沉积法将含有85%石墨炔、10%氯苯、5%石墨炔聚合物的石墨炔溶液附着在第一单模光纤6-1接头处:将第一单模光纤6-1接头倒立放置,在第一单模光纤6-1接头处涂上石墨炔溶液;S2、待溶液挥发后再次重复步骤1,直至石墨炔溶质完全覆盖在第一单模光纤6-1接头表面;S3、在完全覆盖的第一单模光纤6-1接头表面涂上聚乙烯醇放置石墨炔挥发。实施例2在上述实施例1中,本实施例的石墨炔吸收体6-4由石墨炔薄膜通过光学沉积法设置在第一单模光纤6-1接头处,石墨炔薄膜的制备方法如下:S1、称取1.5mg的石墨炔粉末与1.5mL的氯苯溶液混合,密封超声振荡10h;S2、称取0.3g的聚甲基丙稀酸甲脂、3mL的丙酮溶液混合,将混合液在磁力搅拌机下搅拌2h使聚甲基丙稀酸甲脂晶体充分溶解,磁力搅拌时的温度低于50℃,搅拌完成后密封上述胶体超声振荡10h;S3、将1.5ml的石墨炔溶液与3mL步骤2制备的溶液混合,超声振荡10h;S4、将步骤3制备好的溶液每次滴取0.25mL在旋涂机上分别以1000rad/min、1200rad/min、1500rad/min的转速旋涂30s,制得厚度不同的三种石墨炔薄膜;S5、将旋涂过的石墨炔薄膜放置在烘干箱内烘干1h。通过光学沉积法将制成薄膜的石墨炔加入第一单模光本文档来自技高网...

【技术保护点】
1.一种基于非线性偏振旋转技术与石墨炔的混合锁模脉冲激光器,具有用于输出泵浦光的泵浦源,其特征在于:泵浦源光出射方向依次设置有波分复用器、无源光纤、高增益铒纤、偏振调制器、石墨炔锁模器、隔离器、耦合器;所述的泵浦源的输出端接波分复用器的a输入端,波分复用器的c输出端接无源光纤和高增益铒纤,高增益铒纤的输出端接偏振调制器,偏振调制器的输出端接石墨炔锁模器,石墨炔锁模器的输出端接隔离器,隔离器的输出端接耦合器的d输入端,耦合器的f输出端输出40%的光用来检测光谱、e输出端输出60%的光进入波分复用器的b输入端,形成一个闭合回路的环形腔。

【技术特征摘要】
1.一种基于非线性偏振旋转技术与石墨炔的混合锁模脉冲激光器,具有用于输出泵浦光的泵浦源,其特征在于:泵浦源光出射方向依次设置有波分复用器、无源光纤、高增益铒纤、偏振调制器、石墨炔锁模器、隔离器、耦合器;所述的泵浦源的输出端接波分复用器的a输入端,波分复用器的c输出端接无源光纤和高增益铒纤,高增益铒纤的输出端接偏振调制器,偏振调制器的输出端接石墨炔锁模器,石墨炔锁模器的输出端接隔离器,隔离器的输出端接耦合器的d输入端,耦合器的f输出端输出40%的光用来检测光谱、e输出端输出60%的光进入波分复用器的b输入端,形成一个闭合回路的环形腔。2.根据权利要求1所述的基于非线性偏振旋转技术与石墨炔的混合锁模脉冲激光器,其特征在于所述的石墨炔锁模器为:第一单模光纤和第二单模光纤通过法兰盘连接,第一单模光纤的接头与第二单模光纤的接头相对设置,第一单模光纤的接头处设置有石墨炔吸收体。3.根据权利要求2所述的基于非线性偏振...

【专利技术属性】
技术研发人员:李晓辉李红旗靳志文郭朋来郭艺璇
申请(专利权)人:陕西师范大学
类型:新型
国别省市:陕西,61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1