带可操纵翼型稳定侧体的远距离遥控海水采样太阳能无人船制造技术

技术编号:17929568 阅读:52 留言:0更新日期:2018-05-15 13:21
本发明专利技术公开了一种带可操纵翼型稳定侧体的远距离遥控海水采样太阳能无人船,包括主船体、可操纵翼型稳定侧体、电力系统、推进系统、水质采样系统以及控制系统;主船体包括船壳板、船体骨架、平台甲板和圆弧顶结构;可操纵翼型稳定侧体的主侧体和襟翼侧体均为空腔结构;支柱上端与船壳板连接,支柱下端与主侧体通过主侧体旋转轴连接;主侧体与主侧体伺服电机通过齿轮连接,襟翼侧体通过襟翼侧体旋转轴连接在主侧体后端,襟翼侧体转角驱动导轨一端与襟翼侧体旋转轴固定连接,另一端与固定在支柱下端的襟翼侧体导向轴活动连接;本发明专利技术具有续航力长、航向稳定性优良、回转操纵灵活的特点,可全天候执行远距离遥控水质采样任务,并具备自主作业能力。

Remote controlled seawater sampling solar powered unmanned ship with controllable airfoil stabilized side

The present invention discloses a remote controlled sea water sampling solar unmanned ship with a maneuverable wing type stable side body, including the main hull, the maneuverable airfoil stable side body, the electric power system, the propulsion system, the water quality sampling system and the control system, and the main hull includes the hull plate, the hull skeleton, the platform deck and the circular arc top structure. The main side body and flap side body of the stable side body of the maneuverable airfoil are both cavity structures; the upper end of the pillar is connected with the hull plate, the lower end of the pillar is connected with the main side body through the main side rotating shaft; the main side body is connected with the main side servo motor through the gear, and the flap side is connected to the rear end of the main side body and the flap side body through the flaps side body rotation axis. One end of the angle driving guide rail is connected with the rotating shaft of the flap side body and the other end is connected with the guide axis of the flap side which is fixed on the lower end of the pillar. The invention has the characteristics of long endurance, good heading stability and flexible maneuvering, and can perform remote remote control water quality sampling task all weather and have independent operation energy. Power\u3002

【技术实现步骤摘要】
带可操纵翼型稳定侧体的远距离遥控海水采样太阳能无人船
本专利技术涉及一种无人船,特别是涉及一种带可操纵翼型稳定侧体的远距离遥控海水采样太阳能无人船。
技术介绍
无人船是一种在地面的基站或母船控制中心的远程监控下以自主或遥控方式航行于水面并完成特定任务的新型水面运动平台,是海洋环境监测、海洋水文数据观测、海洋灾害预警的重要手段之一。对近海海域进行水质采样的传统手段主要是人工采集,人工采集需要采样人员先乘坐有人船舶到达采样地点,然后借助水质采样设备抽取水质样本,最后再乘坐有人船舶将水质样本带回岸上,其乘坐的有人船舶不得不增大排水量以保障人员安全,不可避免地增加了采样成本;对于一些寒冷、风浪较大或者污染物对人体有害等环境恶劣海域,采样人员进行现场采样十分辛苦而且十分危险,人身安全得不到保障,有时甚至无法到达采样区域;此外人工采集还具有采样周期较长,无法快速、准确反映水质污染情况的缺点,严重影响海洋污染防治工作的开展。近年来,随着定位、通信、控制、人工智能等技术飞速发展,无人船(USV)、水下遥控机器人(ROV)、水下无人自主航行器无人(AUV)等无人移动监测平台已经逐渐应用到海洋水质检测领域。与在水下航行的ROV以及AUV相比,无人船在海洋表面运动,受到的外界约束少,具有较高的灵活性,应用范围十分广泛,且具有成本低廉、通讯可靠、定位方便、易于控制等优点,正逐步成为海洋探测领域的研究热点之一。绿色化、智能化将成为船舶领域下一步发展的重点之一。具体来说,是通过突破船体线型设计技术、结构优化技术、减阻降耗技术、高效推进技术、清洁能源及可再生能源利用技术等,研制出节能环保型船舶;通过突破自动化技术等信息技术在船舶上的应用关键技术,实现航行自动化、机械自动化、装载自动化,并实现航线规划、船舶驾驶、航姿调整、设备监控等,提高船舶的智能化水平。传统的三体船中体、侧体均设置推进器,且侧体为永久固定在中体上的单一结构,通过侧体推进器的转速差实现转向。然而,在恶劣海况下,排水量较小的水质采样无人船对风浪作用敏感,航向稳定性较差,需要不断操纵以维持航向;此外,单纯靠频繁改变侧体的两台推进器转速差实现船体转向不仅耗能大,对推进器损害问题也不容忽视。目前商业化水质采样无人船产品大多针对内河、湖泊、港口等小范围水域采样设计,船舶续航能力小(<70km),稳性、耐波性、快速性等航行性能较差,无法进行复杂的远距离海上采样作业,已经不能满足海洋环境监测部门对远离海岸的监测点动态检测的要求。
技术实现思路
本专利技术主要是解决现有技术中所存在的技术问题,从而提供一种以可再生的太阳能为主要能源、续航力远、操纵灵活、耐波性以及航向稳定性优良的远距离遥控海水采样的太阳能无人船。本专利技术的技术问题主要是通过下述技术方案得以解决:带可操纵翼型稳定侧体的远距离遥控海水采样太阳能无人船,包括主船体、可操纵翼型稳定侧体、电力系统、推进系统、水质采样系统以及控制系统;其中,主船体包括船壳板、船体骨架、平台甲板和圆弧顶结构;圆弧顶结构与船壳板以及船体骨架连接形成密闭船体空间,圆弧顶结构顶部设置有柔性太阳能薄膜电池组件、语音设备、灯光设备、摄像设备、告警设备、通讯导航设备以及避障设备;所述可操纵翼型稳定侧体包括支柱、主侧体伺服电机、主侧体旋转轴、主侧体、襟翼侧体、襟翼侧体旋转轴、襟翼侧体转角驱动导轨和襟翼侧体导向轴;所述主侧体和襟翼侧体剖面均为流线型;支柱上端与船壳板连接,支柱下端与主侧体通过主侧体旋转轴连接;主侧体与主侧体伺服电机通过齿轮连接,襟翼侧体通过襟翼侧体旋转轴连接在主侧体后端,襟翼侧体转角驱动导轨一端与襟翼侧体旋转轴固定连接,另一端与固定在支柱下端的襟翼侧体导向轴活动连接;所述电力系统包括柔性太阳能薄膜电池组件、接线盒、太阳能充电控制器、锂电池智能管理器和锂电池组;锂电池组由多个锂电池并联组成;每个柔性太阳能薄膜电池组件设有接线盒,多个柔性太阳能薄膜电池组件通过接线盒串联连接,并与太阳能充电控制器连接,锂电池智能管理器与太阳能充电控制器连接,锂电池组与锂电池智能管理器连接;所述推进系统包括螺旋桨、高强度碳纤维圆管、连杆、推进电机和舵机;螺旋桨设置在无人船的尾端;高强度碳纤维圆管一端与推进电机的整流罩固定连接,另一端穿过设在船体上的推进器安装孔与连杆连接;连杆与舵机连接;所述水质采样系统包括泵管、泵头、卷管器、蠕动泵、采样箱、废水排放管;泵头和蠕动泵以及蠕动泵和采样箱通过泵管连接,废水排放管将蠕动泵废水排放口与船体外部空间连接;卷管器、蠕动泵分别与控制系统控制器模块的卷管器控制器、蠕动泵控制器连接;所述控制系统包括主控计算机、定位导航模块、通信模块、数据采集模块和控制器模块,主控计算机分别与定位导航模块、通信模块、数据采集模块和控制器模块连接,对可操纵翼型稳定侧体、电力系统、推进系统和水质采样系统进行操作控制。为进一步实现本专利技术目的,优选地,所述的支柱上端与船壳板连接的长度跨4个肋位;所述主侧体和襟翼侧体均为空腔结构。优选地,所述的连杆主要由两根杆件和转向装置组成,两根杆件平行设置,两根杆件的两端分别与两个转向装置连接。优选地,所述的主控计算机1为基于PC104总线的PCM-9375单板计算机;所述定位导航模块包括GNSS天线、定位差分天线和GNSS信号接收机;GNSS信号接收机设置在平台甲板后部的电器设备舱内;GNSS天线与定位差分天线设置在圆弧顶结构后部并与GNSS信号接收机连接,GNSS信号接收机接入主控计算机的RS-232串口;所述通信模块包括数据传输天线、数据传输电台、视屏传输天线和视屏传输电台;数据传输天线与数据传输电台连接,数据传输电台接入主控计算机的RS-232串口;视屏传输天线与视屏传输电台连接,视屏传输电台接入主控计算机的RS-232串口;数据采集模块包括摄像机、超声波传感器、三轴捷联磁阻式电子磁罗盘、智能陀螺仪、三轴加速度传感器和水深传感器;摄像机、超声波传感器、三轴捷联磁阻式电子磁罗盘、智能陀螺仪、三轴加速度传感器、水深传感器分别接入主控计算机的RS-232串口;控制器模块设置在平台甲板后部;控制器模块包括推进器控制器、舵机控制器、卷管器控制器、蠕动泵控制器、摄像机控制器、灯光控制器、语音控制器和主侧体伺服电机控制器;推进器控制器、舵机控制器、卷管器控制器、蠕动泵控制器、摄像机控制器、灯光控制器、语音控制器分接入主控计算机的RS-232串口;推进器控制器还与推进电机连接;舵机控制器还与伺服电机连接;卷管器控制器还与卷管器连接;蠕动泵控制器还与蠕动泵连接;摄像机控制器还与摄像机连接;主侧体伺服电机控制器还与主侧体伺服电机连接。优选地,所述的船壳板及船体骨架、平台甲板、圆弧顶结构以及可操纵翼型稳定侧体均由5086铝合金制成。优选地,所述的平台甲板与船壳板及船体骨架连接,水平设置在主船体密闭船体空间内;船体骨架包括龙骨和肋板,船体骨架为横骨架式;船体中纵剖面船底处设置纵向连续的龙骨;船体骨架肋位间距为600mm,肋位处设置整体切割而成的顶部为圆弧形的肋板;船壳板艉部设置推进器安装孔,艏部设置泵管通过孔。优选地,所述的船壳板由多块金属曲面板连续焊接而成,船壳板厚度为5mm;多块金属曲面板连续焊接覆盖在顶部为圆弧形的船体骨架上本文档来自技高网
...
带可操纵翼型稳定侧体的远距离遥控海水采样太阳能无人船

【技术保护点】
一种带可操纵翼型稳定侧体的远距离遥控海水采样太阳能无人船,其特征在于包括主船体、可操纵翼型稳定侧体、电力系统、推进系统、水质采样系统以及控制系统;其中,主船体包括船壳板、船体骨架、平台甲板和圆弧顶结构;圆弧顶结构与船壳板以及船体骨架连接形成密闭船体空间,圆弧顶结构顶部设置有柔性太阳能薄膜电池组件、语音设备、灯光设备、摄像设备、告警设备、通讯导航设备以及避障设备;所述可操纵翼型稳定侧体包括支柱、主侧体伺服电机、主侧体旋转轴、主侧体、襟翼侧体、襟翼侧体旋转轴、襟翼侧体转角驱动导轨和襟翼侧体导向轴;主侧体和襟翼侧体均为空腔结构;支柱上端与船壳板连接,支柱下端与主侧体通过主侧体旋转轴连接;主侧体与主侧体伺服电机通过齿轮连接,襟翼侧体通过襟翼侧体旋转轴连接在主侧体后端,襟翼侧体转角驱动导轨一端与襟翼侧体旋转轴固定连接,另一端与固定在支柱下端的襟翼侧体导向轴活动连接;所述电力系统包括柔性太阳能薄膜电池组件、接线盒、太阳能充电控制器、锂电池智能管理器和锂电池组;锂电池组由多个锂电池并联组成;每个柔性太阳能薄膜电池组件设有接线盒,多个柔性太阳能薄膜电池组件通过接线盒串联连接,并与太阳能充电控制器连接,锂电池智能管理器与太阳能充电控制器连接,锂电池组与锂电池智能管理器连接;所述推进系统包括螺旋桨、高强度碳纤维圆管、连杆、推进电机和舵机;螺旋桨设置在无人船的尾端;高强度碳纤维圆管一端与推进电机的整流罩固定连接,另一端穿过设在船体上的推进器安装孔与连杆连接;连杆与舵机连接;所述水质采样系统包括泵管、泵头、卷管器、蠕动泵、采样箱、废水排放管;泵头和蠕动泵以及蠕动泵和采样箱通过泵管连接,废水排放管将蠕动泵废水排放口与船体外部空间连接;卷管器、蠕动泵分别与控制系统控制器模块的卷管器控制器、蠕动泵控制器连接;所述控制系统包括主控计算机、定位导航模块、通信模块、数据采集模块和控制器模块,主控计算机分别与定位导航模块、通信模块、数据采集模块和控制器模块连接,对可操纵翼型稳定侧体、电力系统、推进系统和水质采样系统进行操作控制。...

【技术特征摘要】
1.一种带可操纵翼型稳定侧体的远距离遥控海水采样太阳能无人船,其特征在于包括主船体、可操纵翼型稳定侧体、电力系统、推进系统、水质采样系统以及控制系统;其中,主船体包括船壳板、船体骨架、平台甲板和圆弧顶结构;圆弧顶结构与船壳板以及船体骨架连接形成密闭船体空间,圆弧顶结构顶部设置有柔性太阳能薄膜电池组件、语音设备、灯光设备、摄像设备、告警设备、通讯导航设备以及避障设备;所述可操纵翼型稳定侧体包括支柱、主侧体伺服电机、主侧体旋转轴、主侧体、襟翼侧体、襟翼侧体旋转轴、襟翼侧体转角驱动导轨和襟翼侧体导向轴;主侧体和襟翼侧体均为空腔结构;支柱上端与船壳板连接,支柱下端与主侧体通过主侧体旋转轴连接;主侧体与主侧体伺服电机通过齿轮连接,襟翼侧体通过襟翼侧体旋转轴连接在主侧体后端,襟翼侧体转角驱动导轨一端与襟翼侧体旋转轴固定连接,另一端与固定在支柱下端的襟翼侧体导向轴活动连接;所述电力系统包括柔性太阳能薄膜电池组件、接线盒、太阳能充电控制器、锂电池智能管理器和锂电池组;锂电池组由多个锂电池并联组成;每个柔性太阳能薄膜电池组件设有接线盒,多个柔性太阳能薄膜电池组件通过接线盒串联连接,并与太阳能充电控制器连接,锂电池智能管理器与太阳能充电控制器连接,锂电池组与锂电池智能管理器连接;所述推进系统包括螺旋桨、高强度碳纤维圆管、连杆、推进电机和舵机;螺旋桨设置在无人船的尾端;高强度碳纤维圆管一端与推进电机的整流罩固定连接,另一端穿过设在船体上的推进器安装孔与连杆连接;连杆与舵机连接;所述水质采样系统包括泵管、泵头、卷管器、蠕动泵、采样箱、废水排放管;泵头和蠕动泵以及蠕动泵和采样箱通过泵管连接,废水排放管将蠕动泵废水排放口与船体外部空间连接;卷管器、蠕动泵分别与控制系统控制器模块的卷管器控制器、蠕动泵控制器连接;所述控制系统包括主控计算机、定位导航模块、通信模块、数据采集模块和控制器模块,主控计算机分别与定位导航模块、通信模块、数据采集模块和控制器模块连接,对可操纵翼型稳定侧体、电力系统、推进系统和水质采样系统进行操作控制。2.根据权利要求1所述的带可操纵翼型稳定侧体的远距离遥控海水采样太阳能无人船,其特征在于,所述的支柱上端与船壳板连接的长度跨4个肋位;所述可操纵翼型稳定侧体的主侧体和襟翼侧体剖面均为流线型。3.根据权利要求1所述的带可操纵翼型稳定侧体的远距离遥控海水采样太阳能无人船,其特征在于,所述的连杆主要由两根杆件和转向装置组成,两根杆件平行设置,两根杆件的两端分别与两个转向装置连接。4.根据权利要求1所述的带可操纵翼型稳定侧体的远距离遥控海水采样太阳能无人船,其特征在于,所述的主控计算机为基于PC104总线的PCM‐9375单板计算机;所述定位导航模块包括GNSS天线、定位差分天线和GNSS信号接收机;GNSS信号接收机设置在平台甲板后部的电器设备舱内;GNSS天线与定位差分天线设置在圆弧顶结构后部并与GNSS信号接收机连接,GNSS信号接收机接入主控计算机的RS‐232串口;所述通信模块包括数据传输天线、数据传输电台、视屏传输天线和视屏传输电台;数据传输天线与数据传输电台连接,数据传输电台接入主控计算机的RS‐232串口;视屏传输天线与视屏传输电台连接,视屏传输电台接入主控计算机的RS‐232串口;数据采集模块包括摄像机、超声波传感器、三轴捷联磁阻式电子磁罗盘、智能陀螺仪、三轴加速度传感器和水深传感器;摄像机、超声波传感器、三轴捷联磁阻式电子磁罗盘、智能陀螺仪、三轴加速度传感器、水深传感器分别接入主控计算机的RS‐232串口;控制器模块设置在平台甲板后部;控制器模块包括推进器控制器、舵机控制器、卷管器控制器、蠕动泵控制器、摄像机控制器、灯光控制器、语音控制器和主侧体伺服电机控制器;推进器控制器、舵机控制器、卷管器控制器、蠕动泵控制器、摄像机控制器、灯光控制器、语音控制器分接入主控计算机的RS‐232...

【专利技术属性】
技术研发人员:吴家鸣杨显原
申请(专利权)人:华南理工大学
类型:发明
国别省市:广东,44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1