当前位置: 首页 > 专利查询>东北大学专利>正文

一种消除亚共析钢中粗大魏氏组织的强磁场真空退火方法技术

技术编号:1781891 阅读:338 留言:0更新日期:2012-04-11 18:40
一种消除亚共析钢中粗大魏氏组织的强磁场真空退火方法,包括以下步骤:工件装炉;将真空热处理炉内真空度升高至6×10↑[-3]Pa~8×10↑[-3]Pa;将磁场强度升高至大于10T以上;将工件以真空热处理炉的最大升温速度加热至Ae↓[3]+30K,保温(1~1.5min/mm),进行奥氏体化;以小于30K/min的冷却速度将奥氏体化后的工件冷却至873K,然后随炉冷却至室温,再撤去磁场及真空。该方法用于亚共析钢的热处理,可以消除普通处理方法所难以消除的粗大魏氏组织铁素体,抑制了对机械性能具有破坏作用的粗大的先共析魏氏组织铁素体的析出,得到均匀的细小弥散的显微组织,提高亚共析钢的机械性能。另外,施加强磁场热处理可以增加先共析铁素体析出的面积百分含量,提高了亚共析钢的塑性变形能力。

【技术实现步骤摘要】

本专利技术属于金属材料热处理
,特别涉及。该方法通过在亚共析钢真空退火过程中,施加超导直流稳恒强磁场来消除亚共析钢中对机械性能具有破坏作用的粗大的先共析魏氏组织铁素体,获得均匀组织,提高亚共析钢的机械性能。
技术介绍
含碳量小于0.6%(mass%)的亚共析钢在铸造、锻造、轧制、焊接以及热处理后,显微组织中常常可以观测到针片状的先共析魏氏组织铁素体。长期以来,人们对于亚共析钢中的先共析魏氏组织铁素体对机械性能的影响一直存在争论。一种看法认为魏氏组织会降低钢的机械性能,特别是降低钢的冲击韧性,而且使韧脆转变温度升高。另一种看法认为钢中存在少量针片状的魏氏组织或魏氏组织级别在3级以下时,对钢的机械性能影响不大,在某些情况下甚至可以提高钢的机械性能。这些争论尽管存在,但上述两种看法均认为当钢的奥氏体晶粒在高温下粗大化,冷却后产生粗大的魏氏组织铁素体并严重切割基体时,将使钢的强度和冲击韧性显著降低。生产中,对于易产生魏氏组织的亚共析钢常采用控制轧制、降低终锻温度、控制锻造后的冷却速度或调质、退火、正火、等温淬火等工艺来防止或消除粗大的魏氏组织。但是有文献认为亚共析钢中一旦形成粗大的魏氏组织后,是很难消除的,而且奥氏体化温度越高、保温时间越长,魏氏组织越难以消除。尤其是对于合金或杂质元素较少的优质碳素钢以及高纯度钢(超纯净钢),由于缺少第二项粒子的“钉扎”晶界的作用,在奥氏体化时,奥氏体晶粒很容易长大,魏氏组织更容易形成并难以消除。另一方面,近年来,强磁场发生装置的商业化使5T以上的超导直流稳恒强磁场获得变得非常容易,使得利用强磁场热处理控制钢的显微组织和性能成为可能。研究利用强磁场热处理控制亚共析钢中粗大魏氏组织的方法应运而生。
技术实现思路
针对现有技术存在的问题,本专利技术提供一种利用在强磁场条件下的退火热处理来消除亚共析钢中的粗大的分布不均匀的先共析魏氏组织铁素体的方法,获得均匀组织,改善亚共析钢的机械性能。本专利技术方法包括以下步骤1)工件装炉将待处理工件装于强磁场真空热处理炉内。强磁场热处理炉及工件安装方式如图1所示。真空热处理炉安装在超导磁体的中心孔内,超导磁体的磁场中心与真空热处理炉均匀温区重合。超导磁体产生的直流稳恒磁场强度大于10T,升磁场时,超导磁体内部的超导线圈被液氦冷却至4.5K以下,达到超导状态。通过向超导线圈中缓慢增加电流强度来增加磁场强度,电流强度增加速率为2A~2.5A/min。使用Pt-Rh热电偶测量炉膛内工件温度。2)将真空热处理炉内真空度升高至6×10-3Pa~8×10-3Pa。3)将磁场强度升高至大于10T以上的目标磁场强度(在允许条件下,尽量将磁场强度升高至强磁场发生装置能够发生的最大磁场强度)。4)将样品以真空热处理炉的最大升温速度加热至Ae3+30K,保温(1~1.5min/mm)进行奥氏体化。5)以小于30K/min的冷却速度将上述步骤4)中奥氏体化后的样品冷却至873K,然后随炉冷却至室温,再撤去磁场及真空。通过在奥氏体向先共析铁素体转变过程中施加大于10T的超导直流稳恒强磁场,降低相变过程中先共析铁素体相的自由能,引入磁场附加的相变驱动力,从而降低了系统自由能,使先共析铁素体由非磁场热处理后形成的粗大的针片状魏氏组织铁素体形貌转变为施加强磁场热处理后的均匀的沿磁场方向分布的伸长、链式排列组织。非磁场热处理时,针片状的先共析魏氏组织铁素体的形核机制有两种第一种机制是起源于晶界铁素体,由晶界铁素体按照K-S关系沿母相奥氏体{111}fcc晶面向奥氏体晶粒内部长大,即{110}bcc//{111}fcc,<111>bcc//<110>fcc。第二种机制是在母相奥氏体晶粒内部沿母相奥氏体{111}fcc晶面形核,然后按照K-S关系长大。这种取向关系使先共析铁素体与母相奥氏体的相界面形成半共格界面,使作为相变阻力的γ/α相界面能较低,从而降低了系统自由能。{110}bcc与{111}fcc之间的错配度δ≈0.025,半共格界面上错配的柏氏矢量b=0.2nm,错配位错的间距约为8nm。为提高共格程度,进一步降低界面能,在与界面垂直方向上形成许多单原子厚的结构小台阶。这些台阶结构的存在,使相界面与{111}fcc面之间形成10°左右的角度。相界面沿其法向移动如果依靠位错的攀移十分困难,需要很大的激活能。但是,通过台阶沿与相界面平行的方向移动来完成相界面的移动所需激活能较小,比较容易进行。这种台阶机制的结果使铁素体形成了针片状先共析魏氏组织铁素体形态。另外大量研究表明,从奥氏体中析出先共析魏氏组织铁素体的转变具有一个上限温度Ws,随Fe-C合金中含碳量增加,Ws逐渐降低。由于晶界原子排列混乱并存在成分起伏,先共析铁素体优先在奥氏体晶界特别是三叉晶界形核,首先沿晶界生长形成晶界铁素体,同时向周围奥氏体中排出多余的碳原子,导致剩余奥氏体中的碳含量升高,Ws降低。在转变过程中,如果奥氏体的实际温度T总是大于Ws,则不会析出魏氏组织铁素体。这里奥氏体的实际温度受冷却速度控制,冷却速度越慢,奥氏体实际温度越高。而Ws则受晶界铁素体数量多少以及奥氏体中的动态的含碳量控制。奥氏体化温度越低,奥氏体晶粒就越细,晶界数量越多,先共析铁素体形核数量也多,碳从晶界先共析铁素体晶核扩散到周围奥氏体晶粒内部的路程也越短,周围奥氏体中的碳含量也迅速增加,Ws点随含碳量增加而降低,这种情况下,不容易析出魏氏组织铁素体。随奥氏体化温度升高,奥氏体晶粒尺寸更加粗大,此种情况恰好与上述相反,容易形成魏氏组织铁素体。研究表明,粗晶粒奥氏体的Ws温度比细晶粒奥氏体的Ws温度更高,更容易形成魏氏组织铁素体。不施加磁场时,随奥氏体化温度升高,奥氏体晶粒更加粗大,针片状的魏氏组织铁素体更加发达,片厚和片长度增加。相变过程中施加强磁场,可以促进晶界铁素体的形核和长大,使晶界铁素体的数量增加,并提高相变温度。使晶界铁素体中的碳在较高温度下更容易排出到周围奥氏体中,使奥氏体中的含碳量增加更多,从而抑制魏氏组织铁素体产生。由于退磁场及磁偶极子作用,先共析铁素体将形成伸长、链式排列组织。这种伸长、链式排列组织可以减小退磁因子,降低系统自由能。如果适当调整工艺参数(加热速度、奥氏体化温度、保温时间、冷却速度),可以得到均匀的细小弥散的显微组织,从而提高亚共析钢的机械性能。另一方面,相变过程中施加强磁场可以降低先共析铁素体的自由能,使Fe-C合金相图中A1、A3线向右上方移动,使先共析铁素体的最大固溶度点及共析点右移,促进先共析铁素体的形成,并使先共析铁素体的面积百分含量增加,提高了亚共析钢的塑性变形能力。本专利技术的优点是将超导直流稳恒强磁场与退火热处理结合起来,利用强磁场抑制奥氏体晶粒长大及促进铁素体转变的作用控制先共析铁素体的析出形态,抑制了对机械性能具有破坏作用的粗大的先共析魏氏组织铁素体的析出,得到均匀的细小弥散的显微组织,提高亚共析钢的机械性能。本专利技术所采用的方法可以消除普通处理方法所难以消除的粗大魏氏组织铁素体。另外,施加强磁场热处理可以增加先共析铁素体析出的面积百分含量,提高了亚共析钢的塑性变形能力。附图说明图1为强磁场热处理装置及工件安装示意图;图中1、加本文档来自技高网
...

【技术保护点】
一种消除亚共析钢中粗大魏氏组织的强磁场真空退火方法,其特征在于该方法包括以下步骤:1)工件装炉:将待处理工件装于强磁场真空热处理炉内;2)将真空热处理炉内真空度升高至6×10↑[-3]Pa~8×10↑[-3]Pa;3 )将磁场强度升高至大于10T以上;4)将样品以真空热处理炉的最大升温速度加热至Ae↓[3]+30K,保温,进行奥氏体化;5)以小于30K/min的冷却速度将步骤4)中奥氏体化后的样品冷却至873K,然后随炉冷却至室温,再撤去 磁场及真空。

【技术特征摘要】

【专利技术属性】
技术研发人员:王守晶赵骧何长树左良
申请(专利权)人:东北大学
类型:发明
国别省市:89[中国|沈阳]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利