神经干细胞增殖的调节制造技术

技术编号:1734361 阅读:239 留言:0更新日期:2012-04-11 18:40
本发明专利技术旨在用含有各种生物因子的组合物调节多潜能神经干细胞在体外和体内的增殖。特别地,本发明专利技术涉及用于调节前体细胞数目的一种方法和治疗组合物,它是通过干细胞在特定生物因子或这些因子的组合作用下而进行的,其中的前体细胞是由进行分裂的神经干细胞产生。(*该技术在2015年保护过期,可自由使用*)

【技术实现步骤摘要】
本申请是1994年11月14日申请的U.S.Ser.No.08/338,730的部分继续申请。在分裂旺盛的组织,如产生血细胞的骨髓中存在着特化的细胞,即干细胞。干细胞的关键性鉴定特征是其具有自我更新或产生更多自身细胞的能力。一个干细胞的最简单定义为具自我维持能力的一个细胞。一种较为严格的(但仍然是简化的)干细胞的定义是由Potten和Loeffler提出的,他们把干细胞定义为“具有下列功能的未分化细胞a)增殖,b)自我维持,c)产生大量分化的具功能的子代,d)受伤后再生组织,和e)灵活运用这些选择。干细胞分裂产生子代,即前体细胞。前体细胞包含新的干细胞和祖细胞。新的干细胞能够再分裂,产生更多的干细胞,保证其自身维持和产生更多的祖细胞。祖细胞能够进行有限的增殖,其所有子代最终经过非可逆分化成为无丝分裂的功能细胞。附图说明图1示干细胞、祖细胞和分化细胞之间的相互关系。干细胞的作用是替换那些由于自然的细胞死亡、损伤或疾病而失去的细胞。特殊类型组织中出现的干细胞通常与那些含有高转换率细胞的组织相关。然而这一相关性并非总是如此,因为干细胞被认为出现在一些组织,如肝脏中,而这些组织中细胞并不具高转换率。最典型的干细胞系统是造血干细胞。有证据表明位于骨髓的一个单一的造血干细胞,能够经过一系列祖细胞形成所有的血细胞谱系。1991年10月29日授权的美国专利5,061,620提供了一种分离、再生和利用造血干细胞的方法。出生前,造血干细胞在许多部位,包括胎儿卵黄囊、骨髓、肝和脾中处于活跃状态;即将出生时,骨髓成为血细胞生长的主要部位,肝脏和脾脏中的造血干细胞处于静止状态,并且只有当骨髓中造血干细胞的活性被抑制或出现大范围血细胞破坏时,肝、脾中造血干细胞才重新开始产生血细胞。成体哺乳动物CNS的分化细胞很少或不能进入有丝分裂周期和产生新的神经组织—基本上所有的神经发生出现在出生前和出生后不久阶段。虽然人们认为星形细胞的转换有限而且缓慢,并且出现能导致少突神经胶质细胞的祖细胞,但并不能正常产生新的神经元。然而,大鼠在有限的成体脑部位,如齿状回和嗅球中具有产生新的神经元的有限的能力,但这并不出现于所有的哺乳动物中;并且在成体灵长类中也没有新的神经元的产生。在多数哺乳动物(特别是灵长类)中这种不能产生新的神经元细胞的特性对长期的记忆保留可能是有利的,但是当需要替代由于损伤或疾病而失去的神经细胞时,这成了一种明显的缺陷。哺乳动物CNS中细胞的低转换,以及成体哺乳动物CNS在受伤或疾病后细胞损失情况下不能相应地产生新细胞的特性,导致人们认为成体哺乳动物CNS不含干细胞。然而最近从CNS中分离到在体外具有干细胞特性的细胞。这种细胞出现在从胚胎至成体,表明了成体CNS虽然相应于损伤或疾病并不产生新细胞,但它能够以类似于造血系统的方式产生新细胞和通过干细胞及其子代的增殖和分化修复自身。最近的体内实验结果提示在成体脑室的室管膜下衬垫质中存在着相对静止的干细胞群(Moreshead等,“神经元”(Neuron),Vol.13(5)1071-1082(1994))。在神经损伤或疾病状态下,这些干细胞假如经适当刺激,能成为替代细胞的来源。造血干细胞以及肝、肠和皮肤中的干细胞系统的存活、扩展和增殖,已被证实受许多不同营养因子的控制。例如在造血系统中,红细胞生成素和糖蛋白CSF(集落刺激因子)以及各种白细胞介素已被确定为调节干细胞功能的因子。通过对营养因子在神经细胞在胚胎发育过程中作用的研究表明在出生前神经系统发育过程中有内源性产生物质,如血小板衍生生长因子(PDGF)、睫状神经营养因子(CNTF)、碱性成纤维细胞生长因子(bFGF)、表皮生长因子(EGF)、转化生长因子α(TGFα)和神经生长因子(NGF)参与作用。例如一种胚胎神经祖细胞,即0-2A细胞能产生少突神经胶质细胞和2型星形细胞。在PDGF存在下,0-2A细胞分裂并经几次分裂分化成少突神经胶质细胞。加入CNTF和底物因子,而不加PDGF,能够促进0-2A祖细胞分化成I型星形细胞。bFGF使发育成神经元的胚胎祖细胞的增殖增加2倍。Cattaneo和Mckay(1990)的结果显示将生长因子一起加入或以先后方式加入时,会诱导产生新的效应,而这种效应在将这些因子单独加入时见不到。他们证明了只有将成神经细胞先用bFGF处理后,NGF才能刺激其增殖而产生神经元。bFGF也显示出能够影响PDGF受体的表达和在PDGF存在下阻断0-2A祖细胞的分化。EGF或TGFα显示出对生长于培养物中的胚胎视网膜神经上皮细胞具有一定的促细胞分裂作用,结果使在生长因子持续存在下的祖细胞产生神经元,而不产生胶质细胞。在同一研究中,他们报道了在衍生于出生后大鼠神经上皮的培养物中出现神经元和Muller细胞。CNS疾病包括很多种,如神经变性疾病(象Alzheimer病和帕金森疾病)、急性脑损伤(如中风、头部受伤、大脑性麻痹)和大量与CNS机能障碍有关的疾病(如抑郁、癫病和精神分裂症)。最近几年由于对这些疾病危险性最大的老年人口的增长,神经变性疾病已成为一个重要问题。这些疾病,其中包括Alzheimer疾病、多发性硬化、Huntington舞蹈病、肌萎缩性侧索硬化和帕金森疾病。这些疾病被认为与CNS特定部位的神经细胞的变性有关,它们会导致这些细胞或脑部位不能执行其应当执行的功能。除了神经变性疾病以外,急性脑损伤常常导致神经细胞的损失、受影响脑部位的功能不良以及随之而来的行为异常。CNS机能障碍的最常见类型(按照受影响人数)的特征不是神经细胞的损失,而是现存的神经细胞功能异常。这可能是由于神经元不恰当的激发,或者是由于神经递质的合成、释放和加工的异常。对其中一些机能障碍进行了充分研究,它们是典型的疾病,如抑郁和癫痫,其他的则是研究较少的疾病,如神经官能症和精神病。到目前为止,治疗CNS疾病主要是通过用药物化合物进行。然而,这种治疗伴随着许多问题,包括转运药物通过血-脑屏障的能力有限和病人长期使用这些药物获得的药物耐受性。例如用左旋多巴使帕金森病人的多巴胺能的活性获得部分恢复,该药物是一种能穿过血-脑屏障的多巴胺前体。但病人会对左旋多巴的作用产生耐受性,因而需要逐渐增加剂量以维持其功效。此外,有许多副作用与左旋多巴相关,如运动的增加和无法控制的运动。治疗神经疾病的一项新兴技术需要将细胞植入CNS,以替代或补偿宿主神经细胞的损失或功能异常。虽然胚胎CNS细胞在人体试验中获得了最佳结果,并且是优选的供体组织,但是伦理上和政治上所需考虑的问题以及大量组织的可获得性限制了这种细胞的应用。人们正在研究用于治疗CNS疾病的其他类型供体组织。其中包括经遗传修饰的神经细胞系、成纤维细胞、肌肉细胞、胶质祖细胞和包在荚膜内的细胞。尽管移植法比现有的治疗神经疾病的方法有显著的进步,但这项技术尚未完善。例如,在移植时有些类型细胞不能整合到宿主CNS组织中。特别地,用非神经元原代细胞培养物会限制所移植的材料与宿主组织之间建立联系的能力。从原始神经组织中获得的永生化供体细胞能够形成连接,但是整合入这些转化细胞中的癌基因的表达难以控制,因而会产生肿瘤和其他并发症。供体和宿主会产生对移植入细胞的排斥。也存在着移植的细胞导致肿瘤形成或将传染性物质本文档来自技高网...

【技术保护点】
一种调节多潜能神经干细胞/或所述的神经干细胞子代体外增殖的方法,包括以下步骤:(a)解离含有至少一个多潜能神经干细胞的哺乳动物神经组织,它能产生能分化成神经元、星形细胞和少突神经胶质细胞的子代,并且(b)在一种含有至少一种增殖因子和 一种调节因子的培养基中增殖所述的多潜能神经干细胞,其中的增殖因子能诱导干细胞的增殖而调节因子能调节所述的多潜能神经干细胞和/或所述的多潜能神经干细胞子代的增殖。

【技术特征摘要】
...

【专利技术属性】
技术研发人员:塞缪尔韦斯布伦特A雷诺兹
申请(专利权)人:纽罗斯菲里斯控股有限公司
类型:发明
国别省市:CA[加拿大]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利