一种评价对象的提取方法和装置制造方法及图纸

技术编号:16969584 阅读:35 留言:0更新日期:2018-01-07 06:33
本申请提供了一种评价对象的提取方法和装置,提取方法包括:遍历语料,获取所述语料中的名词和形容词;依据获取得到的名词和形容词,生成依存关系矩阵;依据预设的向量计算方法,计算所述依存关系矩阵中的每个形容词的向量和每个名词的向量;依据所述形容词的向量以及名词的向量,对所述依存关系矩阵进行扩充,所述填充后的依存关系的名词为提取的评价对象。该方案中,考虑了语料中的依存关系信息,提出了依存矩阵的概念和构造方法,基于因子分解的方法使得提取过程具有一定的推理能力,提高了从语料中提取相关产品的评价对象的准确度。

【技术实现步骤摘要】
一种评价对象的提取方法和装置
本专利技术涉及数据分析领域,更具体的说,是涉及一种评价对象的提取方法和装置。
技术介绍
随着社交网络、移动互联网的不断普及,人们发布信息的成本越来越低,越来越多的用户乐于在互联网上分享自己的观点以及对于人物、事件、产品的评论。这些评论反映了人们对于事物的观点和情感倾向,对于舆情分析以及基于大数据的预测有着重要的意义。因此,情感分析技术应运而生,情感分析也被称为观点挖掘、观点分析,情感分析的目的是从文本中挖掘用户表达的观点,通常用情感极性(例如,正向、负向、中性等)来表示。传统的情感分析主要关注一条评论整体的情感极性,然而整体的情感极性往往粒度较粗,用户无法依据整体的情感极性来判断当前产品在自己关注的某个属性上是否具有良好的口碑。一个整体口碑较好的产品不一定在每个属性上都具有良好的口碑,而不同的用户对同类别的产品关注的属性往往也存在一定的差异性。因此,如何对产品进行细粒度的情感分析成为亟待解决的问题。而如何准确地提取产品的属性是解决细粒度情感分析的基础。例如,考虑如下针对某部电影的评论:“剧情不错,特效很炫,就是票价太贵了。”这里“剧情”“特效”“票价”都本文档来自技高网...
一种评价对象的提取方法和装置

【技术保护点】
一种评价对象的提取方法,其特征在于,包括:遍历语料,获取所述语料中的名词和形容词,所述语料中包含预置语料库中的全部评论信息;依据获取得到的名词和形容词,生成依存关系矩阵;依据预设的向量计算方法,计算所述依存关系矩阵中的每个形容词的向量和每个名词的向量;依据所述形容词的向量以及名词的向量,对所述依存关系矩阵进行扩充,所述扩充后的依存关系矩阵中的名词为提取的评价对象。

【技术特征摘要】
1.一种评价对象的提取方法,其特征在于,包括:遍历语料,获取所述语料中的名词和形容词,所述语料中包含预置语料库中的全部评论信息;依据获取得到的名词和形容词,生成依存关系矩阵;依据预设的向量计算方法,计算所述依存关系矩阵中的每个形容词的向量和每个名词的向量;依据所述形容词的向量以及名词的向量,对所述依存关系矩阵进行扩充,所述扩充后的依存关系矩阵中的名词为提取的评价对象。2.根据权利要求1所述的方法,其特征在于,所述遍历语料,获取所述语料中的名词和形容词之后,所述依据获取得到的名词和形容词,生成依存关系矩阵之前,还包括:接收用户的输入信息;基于所述输入信息在所述名词中选择至少一个评价对象种子以及在所述形容词中选择至少一个评价词种子,所述至少一个评价对象种子组成评价对象种子集合、所述至少一个评价词种子组成评价词种子集合。3.根据权利要求2所述的方法,其特征在于,所述依据所述形容词的向量以及名词的向量,对所述依存关系矩阵进行扩充,包括:在所述评价词种子集合中选定任一评价词种子;依据预设的计算规则,在所述依存关系矩阵中选择N个形容词作为对所述评价词种子的推荐结果,所述N个形容词与所述评价词种子之间的向量内积是所述依存关系矩阵中每个形容词与所述评价词种子之间的向量内积最大的N个,所述N为大于1的整数;将所述评价词种子集合中的每一个评价词种子的推荐结果与所述评价对象种子集合合并,得到扩展后的评价对象集合;在所述扩展后的评价对象集合中选择任一评价对象作为候选评价对象;依据预设的计算规则,在所述依存关系矩阵中选择M个名词作为对所述候选评价对象的推荐结果,所述M个名词与所述候选评价对象之间的向量内积是所述评价对象集合中每个名词与所述候选评价对象之间的向量内积最大的M个,所述M为大于1的整数;将所述评价对象集合中的每一个评价对象的推荐结果与所述评价词种子集合合并,得到扩展后的评价词种子集合;返回执行所述在所述评价词种子集合中选定任一评价词种子步骤,选择另一评价词种子,直至所述评价对象集合中不再扩展有新的评价对象为止,对所述依存关系矩阵填充完成,填充完成后的依存关系矩阵中的名词集合即为评价对象最终提取结果。4.根据权利要求3所述的方法,其特征在于,所述依据预设的计算规则,在所述依存关系矩阵中选择N个形容词作为对所述评价词种子的推荐结果,包括:依据所述预设的计算规则,按照形容词与所述评价词种子计算得到的向量内积的大小依次为所述评价词种子集合中的每个评价词种子推荐评...

【专利技术属性】
技术研发人员:沈一鲍新平
申请(专利权)人:北京奇艺世纪科技有限公司
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1