一种基于机器视觉和神经网络算法的机采绿茶分级试验台制造技术

技术编号:16881337 阅读:157 留言:0更新日期:2017-12-26 23:09
本发明专利技术公开了一种基于机器视觉技术和神经网络算法的机采绿茶分级试验台,机采绿茶物料通过供料系统均匀滑落至相机镜头,检测系统拍摄物料图像并将采集到的图像传输给图像采集卡,分级系统对图像数据进行处理,运用神经网络算法进行分级并将分级结果输出给执行机构,执行机构执行分级系统指令,吹出满足条件的物料。试验台可通过调整滑槽倾角、高度、槽间距,设置相机曝光时间,调整气阀的控制面积以及整体的气源压力,匹配相机采样时间与茶叶本身流过该相机的时间,并使PLC接收指令时间和发出控制信号的时间略小于茶叶从检测系统到达执行机构的时间,进而对不同加工阶段(鲜叶、理条后、烘干后)的机采绿茶进行分级,通过测试分级正确率和效率,寻找机采绿茶最佳分级方案,为设计机采绿茶分级设备提供理论依据和试验基础。

A machine vision and neural network algorithm for green tea grading test stand

The invention discloses a machine vision technology and neural network algorithm based on mining Green Tea grading test bed, the feeding system of uniform slip to the camera lens Green Tea material mining machine, detection system of shooting image and image transmission materials collected for image acquisition card, grading system for image processing data, using neural network algorithm classification and grading results output to the executing mechanism, execution and grading system of instruction, blow out to meet the conditions of the material. Test bench can be adjusted through the chute inclination, height, slot spacing, camera exposure time, the control valve and the whole area to adjust the air pressure, and the sampling time, the camera itself through the camera's tea time, and make PLC receive instruction time and sends control signals of the time is slightly less than the tea from the detection system to actuator the time of different processing stages (fresh leaf, after drying, after apheresis) Green Tea classification, classification accuracy and efficiency through the test, the best classification scheme for Green Tea apheresis, provide theoretical and experimental basis for the design of mining machine Green Tea classification equipment.

【技术实现步骤摘要】
一种基于机器视觉和神经网络算法的机采绿茶分级试验台
本专利技术涉及一种机采绿茶分级试验台,更具体的来说,涉及一种基于机器视觉技术和神经网络算法的机采绿茶分级试验台。
技术介绍
名优绿茶采摘环节的瓶颈问题是制约我国绿茶产业发展的重要因素,受茶园管理水平、茶树品种、地形地貌、设备等因素的影响,现有的机采设备采摘的鲜叶往往存在长短不齐、老嫩不均、茎梗含量高、匀净度低等问题,一般只能用来制作大众茶,优质绿茶特别是级别较高的名优绿茶,还得靠人工采摘,加上劳动力逐渐短缺和劳动力成本不断上涨,名优茶的采摘问题日渐突出。近些年,图像处理技术和分类算法越来越多的应用于采茶机械的设计中,这从一定程度上提高了采摘机器的识别能力,但效率依然很低,名优绿茶机械化采摘的瓶颈问题,短期内还是无法突破。对不同加工阶段(鲜叶、理条后、烘干后)的机采绿茶进行分级,从机采大众茶中分选出名优茶,是名优绿茶实实现全程机械化的新思路,传统的茶叶分级方法可以使机采鲜叶原料在一定程度上按大小归类,有效的将正常芽叶与断碎芽叶和杂物等进行分离,但分级效果离名优茶鲜叶的要求还有一定的差距。
技术实现思路
本专利技术提供了一种基于机器视觉技术本文档来自技高网...
一种基于机器视觉和神经网络算法的机采绿茶分级试验台

【技术保护点】
一种基于机器视觉技术和神经网络算法的机采绿茶分级试验台,其特征在于,该试验台包括:供料系统,用于将所述的机采绿茶物料均匀滑落至所述检测系统;检测系统,与分级系统连接,用于采集机采绿茶物料图像,并将采集到的图像数据传输给所述的分级系统;分级系统,与执行机构连接,用于将所述的机采绿茶物料图像数据进行处理,运用神经网络算法分级并将分级结果输出给执行机构;执行机构,执行分级系统指令,吹出满足条件的物料;出料口,用于收集满足条件和不满足条件的物料。

【技术特征摘要】
1.一种基于机器视觉技术和神经网络算法的机采绿茶分级试验台,其特征在于,该试验台包括:供料系统,用于将所述的机采绿茶物料均匀滑落至所述检测系统;检测系统,与分级系统连接,用于采集机采绿茶物料图像,并将采集到的图像数据传输给所述的分级系统;分级系统,与执行机构连接,用于将所述的机采绿茶物料图像数据进行处理,运用神经网络算法分级并将分级结果输出给执行机构;执行机构,执行分级系统指令,吹出满足条件的物料;出料口,用于收集满足条件和不满足条件的物料。2.如权利要求1所述的基于机器视觉技术和神经网络算法的机采绿茶分级试验台,其特征在于,该试验台还设置有支架、工控机、试验平台,所述的供料系统、检测系统、执行机构、出料口安装在支架上,所述的试验平台上还设置有上位机。3.如权利要求1所述的基于机器视觉技术和神经网络算法的机采绿茶分级试验台,其特征在于,所述供料机构包括:振动喂料器、进料口、滑槽、可调支架,所述的振动喂料器位于进料口上方,所述的进料口与所述的滑槽相连接,固定在所述的可调支架上,所述可调支架通过螺丝调节,用于调整滑槽的倾角和高度。4.如权利要求1所述的基于机器视觉技术和神经网络算法的机采绿茶分级试验台,其特征在于,所述检测系统包括:光源、镜头、相机、图像采集卡、处理器,所述光源、镜头、相机、安装在滑槽下方,所述相机可设置曝光时间,所述图像采集卡、处理器设置于试验平台上,所述相机与所述图像采集卡连接。5.如权利要求1所述的基于机器视觉技术和神经网络算法的机采绿茶分级试验台,其特征在于,所述执行机构包括:PLC、喷嘴、高速电磁阀、气泵,所述PLC用于接收控制信号控制所述高速电磁阀,所述喷嘴、高速电磁阀固定在检测系统下方支架上,所述喷嘴可调节控制面积,所述气泵固定在试验平台上,可调节气源压力,所述高速电磁阀通过气管与所述喷嘴和气泵连接。6.如权利要求1所述的基于机器视觉技术和...

【专利技术属性】
技术研发人员:吴正敏曹成茂胡梦柯谢承建李正方梁菲
申请(专利权)人:安徽农业大学
类型:发明
国别省市:安徽,34

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1