以随机位移响应方差为目标的结构拓扑优化设计方法技术

技术编号:16837732 阅读:60 留言:0更新日期:2017-12-19 20:07
本发明专利技术公开了一种以随机位移响应方差为目标的结构拓扑优化设计方法,用于解决现有结构拓扑优化设计方法实用性差的技术问题。技术方案是采用大质量法将多点加速度转化为力施加到结构上,采用虚拟激励法将随机响应分析转换为简谐响应分析,并使用模态叠加法求解位移响应。然后在考虑频段内以结构关心位置处位移响应功率谱的方差值最小为目标,以结构体积分数为约束进行设计。相比背景技术的设计方法,本发明专利技术方法考虑以随机位移响应方差来直观衡量频响曲线的平稳性,并以此为目标进行拓扑优化设计。最终能够设计得到清晰有效的结构构型,从而能够满足工程实际中对结构随机位移响应曲线尽可能平稳的设计需求,具有极强的工程实际应用价值。

Structural topology optimization design method based on random displacement response variance

The invention discloses a structural topology optimization design method based on the variance of random displacement response, which is used to solve the technical problems of the existing structural topology optimization design method with poor practicability. The technical scheme is using large mass method to multi point acceleration converted into force applied to the structure, using the pseudo excitation method, the stochastic response analysis will be converted to the harmonic response analysis, and using the modal superposition method for solving displacement response. Then the aim is to consider the minimum variance value of the displacement response power spectrum in the frequency band, which is designed with the structure volume fraction as the constraint. Compared with the design method of background technology, the present method considers the stationarity of the frequency response curve directly based on the variance of the random displacement response, and carries out the topology optimization design for this purpose. Finally, a clear and effective structural configuration can be designed, so that it can meet the design requirements for the random response curve of the structure in the engineering practice as stable as possible, and has a very strong practical application value in engineering.

【技术实现步骤摘要】
以随机位移响应方差为目标的结构拓扑优化设计方法
本专利技术涉及一种结构拓扑优化设计方法,特别涉及一种以随机位移响应方差为目标的结构拓扑优化设计方法。
技术介绍
实际工程应用中,许多结构经常承受着幅值、频率和方向等不确定的复杂振动激励,特别是随机振动激励,需要以统计的方法对其进行研究。如航空航天飞行器在服役时受到的气动、噪声激励,能源动力装置在动力转换过程中承受的冲击声振激励,以及自然界中存在的风振、地震激励等。长期工作在随机振动环境下的结构,疲劳损伤甚至破坏是其失效的主要形式,给生命财产带来不可估量的损失。因此在结构设计时考虑其在随机振动环境下的性能表现就显得十分重要。文献“ZhangW.H.,LiuH,GaoT.Topologyoptimizationoflarge-scalestructuressubjectedtostationaryrandomexcitationAnefficientoptimizationprocedureintegratingpseudoexcitationmethodandmodeaccelerationmethod[J].Computers&Structures,2015,158:61-70.”公开了一种随机力激励下的结构拓扑优化方法。该方法采用虚拟激励法与模态加叠加法相结合的方法实现了随机力激励下大规模自由度结构的高精度、高效率随机响应分析,并进行了高效的响应灵敏度分析,解决了传统的完全二次结合法应用于实际工程结构动力响应拓扑优化设计时存在的效率低下的问题,向随机响应拓扑优化的工程应用迈出了一大步。专利技术专利201610398316.X中公开了一种基于大质量法的随机加速度激励下的结构拓扑优化设计方法,解决了现有随机激励下的结构拓扑优化设计方法无法实现多点加速度载荷施加的技术问题。文献与专利技术专利中公开的方法虽然能够实现工程结构的随机力激励下的结构拓扑优化设计,专利技术专利中还能施加类似于地震激励的多点加速度随机载荷。但以上两种方法中优化设计目标均是位移响应均方根最小化,无法直观衡量结构响应曲线的平稳性,无法满足工程结构的实际设计需求。
技术实现思路
为了克服现有结构拓扑优化设计方法实用性差的不足,本专利技术提供一种以随机位移响应方差为目标的结构拓扑优化设计方法。该方法采用大质量法将多点加速度转化为力施加到结构上,采用虚拟激励法将随机响应分析转换为简谐响应分析,并使用模态叠加法求解位移响应。然后在考虑频段内以结构关心位置处位移响应功率谱的方差值最小为目标,以结构体积分数为约束进行设计。相比
技术介绍
的设计方法,本专利技术方法考虑以随机位移响应方差来直观衡量频响曲线的平稳性,并以此为目标进行拓扑优化设计。最终能够设计得到清晰有效的结构构型,从而能够满足工程实际中对结构随机位移响应曲线尽可能平稳的设计需求,具有极强的工程实际应用价值。本专利技术解决其技术问题所采用的技术方案:一种以随机位移响应方差为目标的结构拓扑优化设计方法,其特点是包括以下步骤:步骤一、对结构初始几何模型进行有限元网格划分,获得有限元模型。在拟施加激励位置外建一大质量点,大质量点与结构上承受加速度激励的节点之间通过刚性单元连接。步骤二、在大质量点处施加与加速度等效的力载荷。随机载荷采用限带白噪声激励bp(t),即在整个激励频段上拥有完全相同的功率谱密度值。其中,p(t)为d维随机激励向量,其功率谱密度矩阵为Sp(ω),d为载荷中力的个数,ω为激励圆频率。b为n×d的转换矩阵,用于将d维随机激励向量转换为n维激励分布向量,n为包含大质量节点自由度的结构总自由度数。载荷激励频段为[ωa,ωb],ωb、ωa分别表示激励圆频率上下限。由于功率谱密度矩阵Sp(ω)为Hermitian矩阵,因此存在下式分解其中,Q为功率谱密度矩阵Sp(ω)的秩,γq为d维列向量,表示第q个虚拟简谐激励,(γq)*为其共轭矩阵。1≤q≤Q,上标T表示向量或矩阵的转置。采用大质量法实现加速度载荷的施加,此时的动力学平衡方程按分块矩阵形式表示为其中,Mss、Msb、Mbs、Mbb为结构整体质量矩阵M按结构基础节点和自由节点分块后得到的矩阵,其中下标s表示自由节点自由度,下标b表示基础节点自由度。同理Css、Csb、Cbs、Cbb为结构整体阻尼矩阵C分块后得到的矩阵,Kss、Ksb、Kbs、Kbb为结构整体刚度矩阵K分块后得到的矩阵,同时ML为对应于基础节点质量矩阵Mbb的大质量矩阵。为加速度幅值向量x的分块形式,同理为速度幅值向量的分块形式,xs、xb为位移幅值向量x的分块形式。为拟施加的基础加速度载荷向量。将上述公式中的第二个项展开上式两侧左乘ML的逆矩阵当质量点的质量很大时,中对角元素趋于零,则基础激励处实际获得的加速度为:步骤三、设置拓扑设计变量ηh初始值,优化迭代时其值在0-1之间变化,h是正整数,表示设计域单元编号。给定实体材料杨氏模量E、密度ρ和泊松比μ。每次迭代后,根据当前设计变量值,更新结构有限元模型中的相应材料属性。为了降低局部模态对拓扑优化过程带来的负面影响,选取多项式插值对单元材料属性进行匹配,分别更新每一个有限元单元在当前迭代步下的杨氏模量Eh和密度ρh。ρh=ηhρ(6)步骤四、从模态分析中提取每个单元的刚度矩阵Kh、质量矩阵Mh,以及结构的前l阶固有频率ωi和模态振型矩阵1≤i≤l。由各阶模态振型向量组成。采用瑞利阻尼时,结构的前l阶模态的阻尼比ζi按下式进行计算:式中,α与β为瑞利阻尼系数。采用虚拟激励法计算结构指定自由度r的随机位移响应功率谱密度式中,u表示位移,(gq(t))r为结构指定自由度r在第q个虚拟简谐激励γq下的位移响应,||(gq(t))r||表示复数(gq(t))r的模,即位移响应幅值。(gq(t))r采用模态叠加的方法进行计算,其计算公式为由于采用大质量法进行基础加速度激励时,大质量点激励方向的自由度是放开的,模态分析时会存在刚体模态。在进行模态固有频率和振型提取时需过滤掉刚体模态信息,模态叠加后所得位移为结构指定自由度r相对于基础大质量点的位移响应。式中a为n维列向量,除第r项为1外其余项均为0,T表示向量转置。为各阶模态振型向量,1≤i≤l,l为进行模态叠加时提取的模态阶数。b为n×d转换矩阵,用于将d维随机激励向量转换为n维激励分布向量,n为包含大质量节点的结构总自由度数。假如p(t)中第k个力施加在第z个自由度上,则b的第k列第z行的元素值是1,k列中其它元素值均为0,1≤k≤d,1≤z≤n。ejωt表示以自然常数e为底数的指数函数,ω为激励圆频率,j2=-1。Hi为质量矩阵归一化进行解耦后的第i个单自由度系统的频响函数,计算公式为其中,ω为激励圆频率,ωi和ζi为第i阶固有频率和模态阻尼比,1≤i≤l,l为进行模态叠加时提取的模态阶数。步骤五、按固有频率对考虑频段进行细分,得到若干个频率采样点。这些频率采样点的位移响应功率谱的方差值按下式计算其中,N为频段[ωa,ωb]内采样点总数,ωb、ωa分别表示激励圆频率上下限,ωξ为第ξ个采样点圆频率,1≤ξ≤N。为指定自由度r处所有频率采样点位移响应功率谱的平均值,其计算式为:显然,位移响应方差值总是正值,其值越小表示指定自由度上的频响曲线越本文档来自技高网
...
以随机位移响应方差为目标的结构拓扑优化设计方法

【技术保护点】
一种以随机位移响应方差为目标的结构拓扑优化设计方法,其特征在于包括以下步骤:步骤一、对结构初始几何模型进行有限元网格划分,获得有限元模型;在拟施加激励位置外建一大质量点,大质量点与结构上承受加速度激励的节点之间通过刚性单元连接;步骤二、在大质量点处施加与加速度等效的力载荷;随机载荷采用限带白噪声激励bp(t),即在整个激励频段上拥有完全相同的功率谱密度值;其中,p(t)为d维随机激励向量,其功率谱密度矩阵为Sp(ω),d为载荷中力的个数,ω为激励圆频率;b为n×d的转换矩阵,用于将d维随机激励向量转换为n维激励分布向量,n为包含大质量节点自由度的结构总自由度数;载荷激励频段为[ωa,ωb],ωb、ωa分别表示激励圆频率上下限;由于功率谱密度矩阵Sp(ω)为Hermitian矩阵,因此存在下式分解

【技术特征摘要】
1.一种以随机位移响应方差为目标的结构拓扑优化设计方法,其特征在于包括以下步骤:步骤一、对结构初始几何模型进行有限元网格划分,获得有限元模型;在拟施加激励位置外建一大质量点,大质量点与结构上承受加速度激励的节点之间通过刚性单元连接;步骤二、在大质量点处施加与加速度等效的力载荷;随机载荷采用限带白噪声激励bp(t),即在整个激励频段上拥有完全相同的功率谱密度值;其中,p(t)为d维随机激励向量,其功率谱密度矩阵为Sp(ω),d为载荷中力的个数,ω为激励圆频率;b为n×d的转换矩阵,用于将d维随机激励向量转换为n维激励分布向量,n为包含大质量节点自由度的结构总自由度数;载荷激励频段为[ωa,ωb],ωb、ωa分别表示激励圆频率上下限;由于功率谱密度矩阵Sp(ω)为Hermitian矩阵,因此存在下式分解其中,Q为功率谱密度矩阵Sp(ω)的秩,γq为d维列向量,表示第q个虚拟简谐激励,(γq)*为其共轭矩阵;1≤q≤Q,上标T表示向量或矩阵的转置;采用大质量法实现加速度载荷的施加,此时的动力学平衡方程按分块矩阵形式表示为其中,Mss、Msb、Mbs、Mbb为结构整体质量矩阵M按结构基础节点和自由节点分块后得到的矩阵,其中下标s表示自由节点自由度,下标b表示基础节点自由度;同理Css、Csb、Cbs、Cbb为结构整体阻尼矩阵C分块后得到的矩阵,Kss、Ksb、Kbs、Kbb为结构整体刚度矩阵K分块后得到的矩阵,同时ML为对应于基础节点质量矩阵Mbb的大质量矩阵;为加速度幅值向量的分块形式,同理为速度幅值向量的分块形式,xs、xb为位移幅值向量x的分块形式;为拟施加的基础加速度载荷向量;将上述公式中的第二个项展开上式两侧左乘ML的逆矩阵当质量点的质量很大时,中对角元素趋于零,则基础激励处实际获得的加速度为:步骤三、设置拓扑设计变量ηh初始值,优化迭代时其值在0-1之间变化,h是正整数,表示设计域单元编号;给定实体材料杨氏模量E、密度ρ和泊松比μ;每次迭代后,根据当前设计变量值,更新结构有限元模型中的相应材料属性;为了降低局部模态对拓扑优化过程带来的负面影响,选取多项式插值对单元材料属性进行匹配,分别更新每一个有限元单元在当前迭代步下的杨氏模量Eh和密度ρh;ρh=ηhρ(6)步骤四、从模态分析中提取每个单元的刚度矩阵Kh、质量矩阵Mh,以及结构的前l阶固有频率ωi和模态振型矩阵1≤i≤l;由各阶模态振型向量组...

【专利技术属性】
技术研发人员:高彤邱利彬唐磊张卫红
申请(专利权)人:西北工业大学
类型:发明
国别省市:陕西,61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1