一种对激光加工形成的激光槽的特征自动识别方法技术

技术编号:16458434 阅读:49 留言:0更新日期:2017-10-25 22:54
本发明专利技术提出一种基于数字图像处理的激光槽的特征智能化自动识别方法,利用一种三维检测系统,例如白光垂直扫描干涉轮廓仪可以得到纵向分辨率<1.0nm,横向分辨率最高可达0.35μm的真实高度对应的数字图像,即每个像素对应一个高度数据。通过数字图像处理技术,对凹槽进行识别,计算出凹槽的宽度和深度,此检测在激光加工形成激光槽之后进行,不受激光加工时的物理影响,能提高对激光槽评估的准确性和可靠性。

An automatic recognition method of laser grooves formed by laser processing

The invention provides a method for automatic recognition of features of intelligent laser groove based on digital image processing, the use of a three-dimensional detection system, such as the vertical scanning white light interferometer can get vertical resolution of < 1.0nm, a high degree of real digital image corresponding to the lateral resolution of up to 0.35 m, each pixel corresponds to a height data. By digital image processing technology, to identify the groove, groove width and depth is calculated, after this detection in the laser processing laser forming groove, physics is not affected by the laser processing, can improve the reliability and accuracy of laser trough assessment.

【技术实现步骤摘要】
一种对激光加工形成的激光槽的特征自动识别方法
本专利技术涉及激光加工领域。
技术介绍
激光加工技术已经广泛应用于制造业的许多领域。近年来随着集成电路制程工艺和高效太阳能电池技术等先进制造业领域的进一步发展,微纳米级激光加工技术在这些领域中显示特征的能力,成为这些领域中不可替代的促成技术。例如在集成电路制造中,晶片本身就非常薄,切割工艺涉及到一系列问题,比如一片晶片能够切割出多少芯片、或者怎样在不导致缺陷的情况下切割出复杂集成电路芯片等。由于最终的芯片产品在具有更多高级功能的同时变得越来越小,所以切割过程必须工作在越来越严格的条件下。传统的金刚刀切割技术由于机械刀片尺寸的限制,加上容易出现裂痕、崩缺等异常,已经处理不了划片道尺寸50μm以下的产品,而激光隐形切割技术的应用却能很好地处理这个问题。隐性切割是一种创新型、高质量的切割技术。激光隐形切割只是半导体制造工艺的一部分,但是这一部分的改变却可以给整个工艺造成巨大影响。同时切割的凹槽宽度和深度严重影响芯片的碎裂情况和封装难易度,通过监测凹槽的参数(宽度和深度,通常在几十微米宽度和十微米左右深度)可以决定如何调整切割,以获得更高的封装良率。正在兴起的PERC(PassivatedEmitterRearCell)高效太阳能电池技术,采用类似的激光加工技术来形成深度在150nm以下的激光槽,是太阳能电池技术必不可少的组成部分。它的精确加工和控制是高效太阳能电池技术产品良率的关键技术之一。目前,对激光槽的评估多是激光切割仪器检测和3D显微镜。激光切割仪器检测方法存在很大缺点:一方面切割仪器只能测量宽度,并不能测量深度;另一方面,切割仪器的检测精度并不高,只有1μm左右,而且时和切割后的凹槽会有一些因物理反应导致的偏差(如热效应等),使测试数据并不准确。高精度的3D显微镜包括了激光共聚焦显微镜和白光垂直扫描干涉轮廓仪,能够实现微纳米级的宽度和深度的测量。但是测量的激光槽宽度和深度必须在测量后人为地去寻找和确定。这样的测量操作大大增加了测量的时间,同时由于人工寻找,测量的参数受操作人员的主观影响导致测量的稳定性和重复性都不够理想。
技术实现思路
为解决上述问题,本专利技术提供一种对激光加工形成的激光槽的特征自动识别方法,能够借助图像处理技术对凹槽进行自动识别,同时计算出凹槽的宽度和深度,从而提高对凹槽评估的效率、准确性、和可靠性。为了实现上述目的,本专利技术对激光加工形成的激光槽的特征自动识别方法采用了如下的设计方案:包括以下步骤:(1)、把切割后的晶圆放置到白光垂直扫描干涉轮廓仪的载物台上,将整个晶圆分为N块区域,从N块区域中随机抽取一块作为被测区域,并用白光垂直扫描干涉轮廓仪采集图像并计算出这块被测区域的高度图像数据;(2)、将被测区域的高度图像数据根据高度数值的不同映射到灰度图像上,高度越大灰度值越大,高度越小灰度值越小,然后对灰度图像进行USM锐化,再二值化处理,使切割痕迹与晶圆面达到分割效果;二值化后,灰度值为最高像素值对应的高度平均值作为晶圆基准面高度H0;(3)、去除碎块:被测区域内除了凹槽部分也可能有其他磨损点,可以通过标记连通区域,统计各连通区域像素点个数即连通区域面积,设置要删除的连通区域面积阈值,将阈值之外的连通区域删除,以去除非凹槽碎块;(4)、对凹槽的凸包求中轴线,再对中轴线进行直线拟合,拟合出的直线即为凹槽中轴线l轴;(5)、求凹槽的宽度和深度:凹槽的宽度和深度参数是取平均值,因此可以统计去碎块后灰度值为0的像素点个数N,根据相机像元尺寸P和物镜倍数O求出宽度值W,其表达如下:其中:L为凹槽的长度,即中轴线拟合出的直线l轴长度,k为光学系数;同时,通过统计中轴线两边宽度的1/4,灰度值为0处的高度平均值H,再减去晶圆基准面高度H0,得出凹槽深度Dep,其公式如下:Dep=H﹣H0。有益效果:与现有技术相比,本专利技术具有以下有益效果,1、采用白光垂直扫描干涉轮廓仪精度高、范围广,对纳米级到微米级的深度都能实现菜单化、一键式测量,操作简便,通过高度数字图像,能直接看出凹槽的样貌;2、凹槽宽度和深度自动识别,操作简便的同时,获得凹槽参数数据,方便进行全方位的分析,提高对凹槽评估的准确性、可靠性、稳定性、和重复性,帮助改进激光加工技术的工艺;3、凹槽宽度和深度智能化自动识别,不需要人工去寻找、确定,大大提高了测量的速度和效率,对增加产品质量监测或者降低监测成本有实际意义。附图说明图1是激光切割凹槽识别实验装置结构图。图2是本识别方法中得到的高度图映射的灰度图像;图3是本识别方法中得到的凹槽图像预处理效果图,其中图3(a)是原图即图2,图3(b)是经过锐化后的图像,图3(c)是二值化处理后的图像;图4是本识别方法中得到的凹槽去碎块效果图,其中图4(a)是原图即图3(c),图4(b)是去碎块效果后的图像;图5是典型图形识别中轴线原理图(左为长方形,右为正方形);图6是本识别方法中得到的识别凹槽中轴线效果图,其中图6(a)是原图即图4(b)的灰度变换运算,只为凸显效果,不影响处理结果,图6(b)是经过凸包处理后的图像,图6(c)求凸包中轴线效果图,图6(d)是中轴线拟合为直线效果图;图7是本专利技术基于数字图像处理的激光切割凹槽的特征识别方法流程图。具体实施方案下面结合附图,进一步阐明本专利技术,应理解这些实例仅用于说明本专利技术而不用于限制本专利技术一种对激光加工形成的激光槽的特征自动识别方法的范围,在阅读了本专利技术之后,本领域技术人员对本专利技术的各种等价形式的修改均落于本申请所附权利要求所限定的范围。参见图1,为本专利技术激光加工形成的激光凹槽识别的实验装置结构图,主要由白光垂直扫描干涉轮廓仪和计算机构成。白光垂直扫描干涉轮廓仪可以得到纵向分辨率<1.0nm,横向分辨率最高可达0.35μm的真实高度对应的数字图像。将切割后的晶圆放置到白光垂直扫描干涉轮廓仪的载物台上,采集凹槽干涉图像,通过计算机上白光垂直扫描干涉轮廓仪配套软件得出高度图像数据,然后利用数字图像处理技术进行处理。本专利技术基于数字图像处理的激光切割凹槽的特征识别方法具体步骤如下:步骤1:把切割后的晶圆放置到白光垂直扫描干涉轮廓仪的载物台上,将整个晶圆分为N块区域,为减轻采集工作的强度及后续图像处理的复杂度,采用随机抽样的方法,从N块区域中随机抽取一块区域,并用白光垂直扫描干涉轮廓仪采集图像并计算出这块区域的高度图像数据。步骤2:高度图像预处理。白光垂直扫描干涉轮廓仪计算出来的是一个高度图像数据,可以根据其高度的不同映射到0~255的灰度图像上,高度越大灰度值越大,高度越小灰度值越小,然后对灰度图像(如图2)进行图像预处理。为了增加图像凹槽边缘的对比度,先对图像进行USM锐化,再二值化处理,使切割痕迹与晶圆面达到分割效果。二值化后灰度值为255像素对应的高度平均值作为晶圆基准面高度H0。凹槽图像预处理效果如图3。步骤3:去除小碎块。晶圆上除了凹槽部分,也可能有其他磨损点,可以通过标记连通区域,统计各连通区域像素点个数即连通区域面积,设置要删除的连通区域面积阈值,将阈值之外的连通区域删除,就可以去除非凹槽小碎块,其效果如图4。步骤4:识别凹槽中轴线。目标的中轴线是由目标内所有内切圆的圆心组成,如图5为典型图形识本文档来自技高网
...
一种对激光加工形成的激光槽的特征自动识别方法

【技术保护点】
一种对激光加工形成的激光槽的特征自动识别方法,其特征在于,包括以下步骤:(1)、把切割后的晶圆放置到白光垂直扫描干涉轮廓仪的载物台上,将整个晶圆分为N块区域,从N块区域中随机抽取一块被测区域,并用白光垂直扫描干涉轮廓仪采集图像并计算出这块被测区域的高度图像数据即真实高度对应的数字图像;(2)、将被测区域的高度图像数据根据高度数值的不同映射到灰度图像上,高度越大灰度值越大,高度越小灰度值越小,然后对灰度图像进行USM锐化,再二值化处理,使切割痕迹与晶圆面达到分割效果;二值化后,灰度值为最高像素值对应的高度平均值作为晶圆基准面高度H0;(3)、去除碎块:对二值化后的图像标记连通区域,统计各连通区域像素点个数即连通区域面积,设置要删除的连通区域面积阈值,将阈值之外的连通区域删除,以去除非凹槽碎块;(4)、对凹槽的凸包求中轴线,再对中轴线进行直线拟合,拟合出的直线即为凹槽中轴线l轴;(5)、求凹槽的宽度和深度:凹槽的宽度和深度参数是取平均值,以统计去碎块后灰度值为0的像素点个数N,根据相机像元尺寸P和物镜倍数O求出宽度值W,其表达如下:

【技术特征摘要】
1.一种对激光加工形成的激光槽的特征自动识别方法,其特征在于,包括以下步骤:(1)、把切割后的晶圆放置到白光垂直扫描干涉轮廓仪的载物台上,将整个晶圆分为N块区域,从N块区域中随机抽取一块被测区域,并用白光垂直扫描干涉轮廓仪采集图像并计算出这块被测区域的高度图像数据即真实高度对应的数字图像;(2)、将被测区域的高度图像数据根据高度数值的不同映射到灰度图像上,高度越大灰度值越大,高度越小灰度值越小,然后对灰度图像进行USM锐化,再二值化处理,使切割痕迹与晶圆面达到分割效果;二值化后,灰度值为最高像素值对应的高度平均值作为晶圆基准面高度H0;(3)、去除碎块:对二值化后的图像标记连通区域,统计各连通区域像素点个数即连通区域面积,设置要删除的连通区域面积阈值,将阈值之外的连通区域删除,以去除非凹槽碎块;(4)、对凹槽的凸包求中轴线,再对中轴线进行直线拟合,拟合出的直线即为凹槽中轴线l轴;(5)、求凹槽的宽度和深度:凹槽的宽度和深度参数是取平均值,以统计去碎块后灰度值为0的像素点个数N,根据相机像...

【专利技术属性】
技术研发人员:夏勇孙焱群唐寿鸿
申请(专利权)人:镇江超纳仪器有限公司中外合资
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1