当前位置: 首页 > 专利查询>海南大学专利>正文

一种双输入输出NDCS随机时延的二自由度IMC方法技术

技术编号:16367903 阅读:131 留言:0更新日期:2017-10-13 09:52
双输入输出NDCS随机时延的二自由度IMC方法,属于带宽资源有限的多输入多输出NDCS技术领域。针对一种双输入双输出信号之间彼此影响并耦合,需要通过解耦处理的TITO‑NDCS,由于网络数据在节点之间传输过程中所产生的网络时延,不仅影响各自闭环控制回路的稳定性,而且还将影响整个系统的稳定性,甚至导致TITO‑NDCS失去稳定的问题,提出以TITO‑NDCS中所有节点之间的真实网络数据传输过程,代替其间网络时延补偿模型的方法,并对其回路实施二自由度IMC,可免除对节点之间网络时延的测量、估计或辨识,降低时钟信号同步的要求,降低网络随机时延对TITO‑NDCS稳定性的影响,改善系统的控制性能质量。

A two degree of freedom IMC method with double input and output NDCS random delay

The two degree of freedom (IMC) method with double input and output NDCS random delay belongs to the field of multi input multi output NDCS technology with limited bandwidth resources. For a double input double output signal to influence each other and coupled through decoupling processing of TITO NDCS, due to the network data transmission network delay process generated between the nodes, not only affects the stability of the respective control loops are closed, but will also affect the stability of the whole system, and even lead to loss of stability NDCS TITO the problem, put forward to the real network data transmission process between all nodes in NDCS TITO, during which the network time delay compensation method instead of the model, and the implementation of the two degree of freedom IMC on the circuit, can be exempt from the network delay between nodes of measurement and estimation or identification requirements, reduce the synchronous clock signal, to reduce the impact of network delay the TITO NDCS stability control performance, improve the quality of the system.

【技术实现步骤摘要】

一种双输入输出NDCS(Networkeddecouplingcontrolsystems,NDCS)随机时延的IMC(InternalModelControl,IMC)方法,涉及自动控制技术,网络通信技术和计算机技术交叉领域,尤其涉及带宽资源有限的多输入多输出网络解耦控制系统

技术介绍
随着网络通信、计算机和控制技术的发展,以及生产过程控制日益大型化、广域化、复杂化及网络化的发展,越来越多的网络技术应用于控制系统。网络控制系统(Networkedcontrolsystems,NCS)是指基于网络的实时闭环反馈控制系统,NCS的典型结构如图1所示。NCS突破传统控制系统在空间物理位置上的限制,将系统单元改用网络连接,使智能现场设备集成一体化、业务管理网络化,实现结构网络化、节点智能化、控制现场化、功能分散化、系统开放化及产品集成化。与传统的点对点控制模式相比,网络化的控制模式减少布线成本、方便设备维护、增强系统的抗干扰性能、提高数据传输的可靠性、共享网络信息资源等。近年来已被广泛应用于过程自动化、制造业自动化、航空航天、机器人、智能交通等多个领域。在NCS中,由于网络带宽受限,网络诱导时延以及参数不确定性等因素对系统性能和稳定性的影响,使得NCS的分析和综合变得更加困难,NCS面临诸多新的挑战,尤其是未知网络时延的存在,可降低NCS的控制质量,甚至使系统失去稳定性,严重时可能导致系统出现故障。目前,国内外对于NCS的研究,主要是针对单输入单输出(Single-inputandsingle-output,SISO)网络控制系统,分别在网络时延恒定、不确定或随机,网络时延小于一个采样周期或大于一个采样周期,单包传输或多包传输,有无数据包丢失等情况下,对其进行数学建模或稳定性分析与控制。但是,针对实际工业过程中,普遍存在的至少包含两个输入与两个输出(Two-inputandtwo-output,TITO)所构成的多输入多输出(Multiple-inputandmultiple-output,MIMO)网络控制系统的研究则相对较少,尤其是针对输入与输出信号之间,存在耦合作用需要通过解耦处理的多输入多输出网络解耦控制系统(Networkeddecouplingcontrolsystems,NDCS)时延补偿的研究成果则相对更少。MIMO-NDCS的典型结构如图2所示。与SISO-NCS相比,MIMO-NDCS具有以下特点:(1)输入信号与输出信号之间彼此影响并存在耦合作用在存在耦合作用的MIMO-NCS中,一个输入信号的变化将会使多个输出信号发生变化,而各个输出信号也不只受到一个输入信号的影响。即使输入与输出信号之间经过精心选择配对,各控制回路之间也难免存在着相互影响,因而要使输出信号独立跟踪各自的输入信号是有困难的。MIMO-NDCS中的解耦器,用于解除或降低多输入多输出信号之间的耦合作用。(2)内部结构比SISO-NCS要复杂得多(3)被控对象可能存在不确定性因素在MIMO-NDCS中,涉及的参数较多,各控制回路间的联系较多,参数变动对整体控制效果的影响会变得很复杂。(4)控制部件失效在MIMO-NDCS中,至少包含有两个或两个以上的闭环控制回路,至少包含有两个或两个以上的传感器和执行器。每一个元件的失效都可能影响整个控制系统的性能,严重时会使控制系统不稳定,甚至造成重大事故。由于MIMO-NDCS的上述特殊性,使得大部分基于SISO-NCS进行设计与控制的方法,已无法满足MIMO-NDCS的控制性能与控制质量的要求,使其不能或不能直接应用于MIMO-NDCS的设计与分析中,给MIMO-NDCS的控制与设计带来了一定的困难。对于MIMO-NDCS,网络时延补偿与控制的难点主要在于:(1)由于网络时延与网络拓扑结构、通信协议、网络负载、网络带宽和数据包大小等因素有关,对大于数个乃至数十个采样周期的随机网络时延,要建立MIMO-NDCS中各个控制回路的网络时延准确的预测、估计或辨识的数学模型,目前几乎是不可能的。(2)发生在MIMO-NDCS中,前一个节点向后一个节点传输网络数据过程中的网络时延,在前一个节点中无论采用何种预测或估计方法,都不可能事先提前知道其后产生的网络时延准确值。时延导致系统性能下降甚至造成系统不稳定,同时也给控制系统的分析与设计带来困难。(3)要满足MIMO-NDCS中,不同分布地点的所有节点时钟信号完全同步是不现实的。(4)由于MIMO-NCS中,输入与输出之间彼此影响,并存在耦合作用,其MIMO-NDCS的内部结构要比MIMO-NCS和SISO-NCS复杂,可能存在的不确定性因素较多,对其实施时延补偿与控制要比MIMO-NCS和SISO-NCS困难得多。
技术实现思路
本专利技术涉及MIMO-NCS中的一种双输入双输出NDCS(TITO-NDCS)随机时延的补偿与控制,其TITO-NDCS的典型结构如图3所示。针对图3中的闭环控制回路1:1)从输入信号x1(s)到输出信号y1(s)之间的闭环传递函数为:式中:C1(s)是控制器,G11(s)是被控对象;τ1表示将控制信号u1(s)从C1(s)控制器所在的C1节点,经前向网络通路传输到解耦执行器DA1节点所经历的网络时延;τ2表示将输出信号y1(s)从传感器S1节点,经反馈网络通路传输到C1(s)控制器所在的C1节点所经历的网络时延。2)来自闭环控制回路2的解耦执行器DA2节点中的控制信号u2(s),作用于交叉解耦通道P12(s)单元及交叉解耦网络传输通道单元,其输出信号yp12(s)再作用于闭环控制回路1,从输入信号u2(s)到输出信号y1(s)之间闭环传递函数为:3)来自闭环控制回路2解耦执行器DA2节点输出的驱动信号u2p(s),通过被控对象交叉通道传递函数G12(s)作用于闭环控制回路1的输出信号y1(s),从输入信号u2p(s)到输出信号y1(s)之间闭环传递函数为:上述闭环传递函数等式(1)和(3)的分母中,包含了网络随机时延τ1和τ2的指数项和时延的存在将恶化控制系统的性能质量,甚至导致系统失去稳定性。针对图3中的闭环控制回路2:1)从输入信号x2(s)到输出信号y2(s)之间的闭环传递函数为:式中:C2(s)是控制器,G22(s)是被控对象;τ3表示将控制信号u2(s)从C2(s)控制器所在的C2节点,经前向网络通路传输到解耦执行器DA2节点所经历的网络时延;τ4表示将输出信号y2(s)从传感器S2节点,经反馈网络通路传输到C2(s)控制器所在的C2节点所经历的网络时延。2)来自闭环控制回路1的解耦执行器DA1节点中的控制信号u1(s),作用于交叉解耦通道P21(s)单元及交叉解耦网络传输通道单元,其输出信号yp21(s)再作用于闭环控制回路2,从输入信号u1(s)到输出信号y2(s)之间闭环传递函数为:3)来自闭环控制回路1解耦执行器DA1节点输出的驱动信号u1p(s),通过被控对象交叉通道传递函数G21(s)作用于闭环控制回路2的输出信号y2(s),从输入信号u1p(s)到输出信号y2(s)之间闭环传递函数为:上述闭环传递函数等式(4)和(6)的分母中,包含了网络随机时延τ3和τ4的指数项和时延的存在本文档来自技高网
...
一种<a href="http://www.xjishu.com/zhuanli/54/201710423846.html" title="一种双输入输出NDCS随机时延的二自由度IMC方法原文来自X技术">双输入输出NDCS随机时延的二自由度IMC方法</a>

【技术保护点】
一种双输入输出NDCS随机时延的二自由度IMC方法,其特征在于该方法包括以下步骤:对于闭环控制回路1:(1).当传感器S1节点被周期为h1的采样信号触发时,将采用方式A进行工作;(2).当控制器C1节点被反馈信号y1b(s)触发时,将采用方式B进行工作;(3).当解耦执行器DA1节点被IMC信号u1(s)或者被来自交叉解耦网络传输通道单元的输出信号yp12(s)触发时,将采用方式C进行工作;对于闭环控制回路2:(4).当传感器S2节点被周期为h2的采样信号触发时,将采用方式D进行工作;(5).当控制器C2节点被反馈信号y2b(s)触发时,将采用方式E进行工作;(6).当解耦执行器DA2节点被IMC信号u2(s)或者被来自交叉解耦网络传输通道单元的输出信号yp21(s)触发时,将采用方式F进行工作;方式A的步骤包括:A1:传感器S1节点工作于时间驱动方式,其触发信号为周期h1的采样信号;A2:传感器S1节点被触发后,对被控对象G11(s)的输出信号y11(s)和被控对象交叉通道传递函数G12(s)的输出信号y12(s),以及解耦执行器DA1节点的输出信号y11mb(s)进行采样,并计算出闭环控制回路1的系统输出信号y1(s)和反馈信号y1b(s),且y1(s)=y11(s)+y12(s)和y1b(s)=y1(s)‑y11mb(s);A3:将反馈信号y1b(s),通过闭环控制回路1的反馈网络通路向控制器C1节点传输,反馈信号y1b(s)将经历网络传输时延τ2后,才能到达控制器C1节点;方式B的步骤包括:B1:控制器C1节点工作于事件驱动方式,被反馈信号y1b(s)所触发;B2:在控制器C1节点中,将闭环控制回路1的系统给定信号x1(s),减去反馈信号y1b(s)作用于反馈滤波器F1(s)的输出信号yF1(s),得到偏差信号e1(s),即e1(s)=x1(s)‑yF1(s);B3:对e1(s)实施IMC算法C1IMC(s),得到IMC信号u1(s);B4:将IMC信号u1(s)通过闭环控制回路1的前向网络通路单元向解耦执行器DA1节点传输,IMC信号u1(s)将经历网络传输时延τ1后,才能到达解耦执行器DA1节点;方式C的步骤包括:C1:解耦执行器DA1节点工作于事件驱动方式,被IMC信号u1(s)或者被来自交叉解耦网络传输通道单元的输出信号yp12(s)所触发;C2:将IMC信号u1(s)作用于被控对象预估模型G11m(s)得到其输出值y11mb(s);C3:将IMC信号u1(s)作用于交叉解耦通道P21(s)单元得到其输出信号yp21(s);C4:将信号yp21(s)通过交叉解耦网络传输通道单元,向闭环控制回路2的解耦执行器DA2节点传输;信号yp21(s)将经历网络传输时延τ21后,才能到达解耦执行器DA2节点;C5:将IMC信号u1(s)与来自于闭环控制回路2解耦执行器DA2节点的IMC信号u2(s)通过交叉解耦通道P12(s)单元及交叉解耦网络传输通道单元的输出信号yp12(s)相减得到信号u1p(s),即u1p(s)=u1(s)‑yp12(s);C6:将信号u1p(s)作用于被控对象G11(s)得到其输出值y11(s);将信号u1p(s)作用于被控对象交叉通道传递函数G21(s)得到其输出值y21(s);从而实现对被控对象G11(s)和G21(s)的解耦与控制,同时实现对网络随机时延τ1和τ2的补偿与二自由度IMC;方式D的步骤包括:D1:传感器S2节点工作于时间驱动方式,其触发信号为周期h2的采样信号;D2:传感器S2节点被触发后,对被控对象G22(s)的输出信号y22(s)和被控对象交叉通道传递函数G21(s)的输出信号y21(s),以及解耦执行器DA2节点的输出信号y22mb(s)进行采样,并计算出闭环控制回路2的系统输出信号y2(s)和反馈信号y2b(s),且y2(s)=y22(s)+y21(s)和y2b(s)=y2(s)‑y22mb(s);D3:将反馈信号y2b(s),通过闭环控制回路2的反馈网络通路向控制器C2节点传输,反馈信号y2b(s)将经历网络传输时延τ4后,才能到达控制器C2节点;方式E的步骤包括:E1:控制器C2节点工作于事件驱动方式,被反馈信号y2b(s)所触发;E2:在控制器C2节点中,将闭环控制回路2的系统给定信号x2(s),减去反馈信号y2b(s)作用于反馈滤波器F2(s)的输出信号yF2(s),得到偏差信号e2(s),即e2(s)=x2(s)‑yF2(s);E3:对e2(s)实施IMC算法C2IMC(s),得到IMC信号u2(s);E4:将IMC信号u2(s)通过闭环控制回路2的前向网络通路单元向解耦执行器DA2节点传输,IMC信号u2(s)将经历网络传输时延τ3后,才能到达解耦执行器DA...

【技术特征摘要】
1.一种双输入输出NDCS随机时延的二自由度IMC方法,其特征在于该方法包括以下步骤:对于闭环控制回路1:(1).当传感器S1节点被周期为h1的采样信号触发时,将采用方式A进行工作;(2).当控制器C1节点被反馈信号y1b(s)触发时,将采用方式B进行工作;(3).当解耦执行器DA1节点被IMC信号u1(s)或者被来自交叉解耦网络传输通道单元的输出信号yp12(s)触发时,将采用方式C进行工作;对于闭环控制回路2:(4).当传感器S2节点被周期为h2的采样信号触发时,将采用方式D进行工作;(5).当控制器C2节点被反馈信号y2b(s)触发时,将采用方式E进行工作;(6).当解耦执行器DA2节点被IMC信号u2(s)或者被来自交叉解耦网络传输通道单元的输出信号yp21(s)触发时,将采用方式F进行工作;方式A的步骤包括:A1:传感器S1节点工作于时间驱动方式,其触发信号为周期h1的采样信号;A2:传感器S1节点被触发后,对被控对象G11(s)的输出信号y11(s)和被控对象交叉通道传递函数G12(s)的输出信号y12(s),以及解耦执行器DA1节点的输出信号y11mb(s)进行采样,并计算出闭环控制回路1的系统输出信号y1(s)和反馈信号y1b(s),且y1(s)=y11(s)+y12(s)和y1b(s)=y1(s)-y11mb(s);A3:将反馈信号y1b(s),通过闭环控制回路1的反馈网络通路向控制器C1节点传输,反馈信号y1b(s)将经历网络传输时延τ2后,才能到达控制器C1节点;方式B的步骤包括:B1:控制器C1节点工作于事件驱动方式,被反馈信号y1b(s)所触发;B2:在控制器C1节点中,将闭环控制回路1的系统给定信号x1(s),减去反馈信号y1b(s)作用于反馈滤波器F1(s)的输出信号yF1(s),得到偏差信号e1(s),即e1(s)=x1(s)-yF1(s);B3:对e1(s)实施IMC算法C1IMC(s),得到IMC信号u1(s);B4:将IMC信号u1(s)通过闭环控制回路1的前向网络通路单元向解耦执行器DA1节点传输,IMC信号u1(s)将经历网络传输时延τ1后,才能到达解耦执行器DA1节点;方式C的步骤包括:C1:解耦执行器DA1节点工作于事件驱动方式,被IMC信号u1(s)或者被来自交叉解耦网络传输通道单元的输出信号yp12(s)所触发;C2:将IMC信号u1(s)作用于被控对象预估模型G11m(s)得到其输出值y11mb(s);C3:将IMC信号u1(s)作用于交叉解耦通道P21(s)单元得到其输出信号yp21(s);C4:将信号yp21(s)通过交叉解耦网络传输通道单元,向闭环控制回路2的解耦执行器DA2节点传输;信号yp21(s)将经历网络传输时延τ21后,才能到达解耦执行器DA2节点;C5:将IMC信号u1(s)与来自于闭环控制回路2解耦执行器DA2节点的IMC信号u2(s)通过交叉解耦通道P12(s)单元及交叉解耦网络传输通道单元的输出信号yp12(s)相减得到信号u1p(s),即u1p(s)=u1(s)-yp12(s);C6:将信号u1p(s)作用于被控对象G11(s)得到其输出值y11(s);将信号u1p(s)作用于被控对象交叉通道传递函数G21(s)得到其输出值y21(s);从而实现对被控对象G11(s)和G21(s)的解耦与控制,同时实现对网络随机时延τ1和τ2的补偿与...

【专利技术属性】
技术研发人员:杜锋
申请(专利权)人:海南大学
类型:发明
国别省市:海南;46

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1