当前位置: 首页 > 专利查询>河南大学专利>正文

原位制备改性氢氧化物、含羟基盐、氧化物纳米粉体的方法技术

技术编号:1635306 阅读:271 留言:0更新日期:2012-04-11 18:40
原位制备改性氢氧化物、含羟基盐、氧化物纳米粉体的方法,属于纳米材料制备技术领域。利用有机反应介质正丁醇或苯与纳米量级的一次粒子表面上的水份形成共沸物被蒸出,同时有机修饰剂可利用蒸馏时的热量不断与纳米粒子表面上的羟基键合,从而达到共沸干燥原位改性制备纳米粉体的目的。共沸蒸馏出的正丁醇或苯可以方便回收并重复利用,不会产生任何污染物,造成环境污染。制备得到的纳米粉体能在弱极性或非极性溶剂中实现纳米量级的分散,解决了纳米添加剂在塑料、橡胶、纤维等高分子领域及润滑油等油品中的分散问题,具有很好的应用前景。

【技术实现步骤摘要】

本专利技术属于纳米材料制备
,特别涉及一种在共沸蒸馏干燥纳米粉体的同时加入有机修饰剂,使有机修饰剂在纳米粒子表面原位反应生成表面改性的纳米粒子的方法。
技术介绍
纳米粒子由于具有表面效应、量子尺寸效应、小尺寸效应等特殊作用,加入到材料里会使材料性能得到大幅提高,因而成为当今材料界研究的热点。但纳米粒子较大的表面活性,又会导致它们在使用时的团聚现象,所以对纳米粒子进行表面改性,解决其在材料中的分散问题,成为纳米材料推广应用的瓶颈问题。沉淀法或溶胶-凝胶法制备得到的纳米粒子,表面存在大量的羟基和水分子,在用传统方法进行干燥时,常常由于粒子间的毛细管现象以及水分子氢键的桥联作用,纳米粒子之间会发生聚集长大现象,结果原来液体中的纳米粒子,干燥后常常变成了较大的团聚体甚至生成硬团聚体,因此,冷冻法、共沸干燥法、喷雾干燥法成为目前干燥纳米粒子的常用方法。在共沸干燥法中,正丁醇或苯可以和水形成共沸体系,尤其是正丁醇与水的共沸体系中,水含量可高达44.5%。这样在共沸时,正丁醇可以替换掉纳米粒子表面的水分子,进而把水份蒸出,得到干燥的纳米粉体。但如果粉体应用到有机体系中,由于极性的差别,还必须根据需要进一步对干燥后的纳米粉体进行有机改性,使工作变得繁杂,并且还不能保证改性剂对纳米粒子表面原位修饰,使修饰效果大打折扣。
技术实现思路
本专利技术目的在于提供一种共沸蒸馏,制备的纳米粉体能在弱极性和非极性溶剂中实现纳米量级的分散。为达上述目的,本专利技术采用如下技术方案,把在水或水醇混合体系制备的金属氢氧化物、含羟基金属盐或金属氧化物纳的纳米量级一次粒子和有机修饰剂均匀分散于有机反应介质正丁醇或苯中,共沸蒸馏进行表面原位反应。有机修饰剂为脂肪酸RCOOH、脂肪酸盐RCOOM或偶联剂,R为C8-C18的直链或支链烷基,M为Na、K、Mg、Ca、Al或Zn。偶联剂为硅烷、钛酸酯、铝酸酯或锆酸酯;氢氧化物、含羟基盐、氧化物中的金属为过渡金属、IIA、IIIA、IVA或VA金属元素。反应温度为50-200℃,反应时间为0.5-24小时,有机修饰剂在反应介质中的浓度为1-1000mmol/L,有机修饰剂与纳米粉体的摩尔比为1∶10-100。反应介质为正丁醇,有机修饰剂与正丁醇的摩尔比为1∶5-300。本专利技术的特点是在共沸体系中加入有机修饰剂,在共沸干燥纳米粒子的同时,表面修饰剂与纳米微粒表面官能团发生化学键合,不但极大程度减少了由于纳米粒子干燥时的毛细管现象形成的硬团聚现象,而且成功实现了在纳米粒子表面原位包覆。这样修饰剂不但可以产生空间位阻作用进一步防止颗粒长大,而且可以改变纳米粒子表面的性质,由原来的亲水性变为亲油性。由此很好解决纳米粒子在塑料、橡胶、纤维高分子材料中和润滑油(酯)油品等材料中的分散问题,达到表面改性的目的。共沸蒸馏出的正丁醇或苯可方便地回收和重复利用,不会造成环境污染。改性后的纳米粒子不但形貌不会发生很大改变,而且在非极性介质中有良好的分散效果。这不同于原来的湿法处理纳米粒子的方法,传统的湿法处理是对干燥后的纳米粉体,重新分散到分散介质中,然后加入修饰剂进行改性,这种方法很难保证修饰剂对纳米量级的一次粒子进行修饰,因为干燥后的纳米粒子由于毛细现象很多成为二次粒子,或干燥后表面存在的活性基团较少或活性较低,修饰剂对它们的修饰很多是对二次粒子的修饰或二次粒子形成的团聚体的修饰,所以修饰效果极不理想,不能在非极性介质实现纳米量级分散,达不到纳米粒子添加到材料中的理想效果。附图说明图1为硬脂酸修饰的纳米Mg(OH)2微粒的红外光谱图;图2为硬脂酸修饰的纳米Mg(OH)2微粒的XRD图;图3为硬脂酸修饰的纳米Mg(OH)2微粒的TEM图;图4为硬脂酸修饰的纳米ZnSn(OH)6微粒的红外光谱图; 图5为硬脂酸修饰的纳米ZnSn(OH)6微粒的TEM图。具体实施例方式实例1、将10ml 5mol/L的MgCl2溶液缓慢滴加到100ml1mol/L的NaOH溶液中,充分搅拌,40℃时进行沉淀反应,反应结束后,过滤,洗涤滤饼,直到滤液用0.1mol/LAgNO3溶液检测不出氯离子为止。然后把滤饼直接加入到10ml的正丁醇中,超声分散均匀后,再加入0.5g的硬脂酸继续超声溶解,直到成均匀体系后,开始进行共沸蒸馏,直到体系中液体全部蒸出为止,得到表面修饰硬脂酸的纳米Mg(OH)2微粒。硬脂酸修饰纳米Mg(OH)2微粒的性能参数如下硬脂酸表面修饰纳米Mg(OH)2微粒的红外光谱图如图1(AVATAR360FT-IR红外光谱仪测试),图中a是通过液相法制备得到的纳米Mg(OH)2微粒在正丁醇中共沸干燥后得到的的红外吸收曲线,b是在共沸体系中加入硬脂酸干燥后的红外吸收曲线,c是b在甲苯中抽提24小时后的红外吸收曲线,d是硬脂酸的红外吸收曲线。从图中比较看出,共沸体系中加入硬脂酸干燥后,硬脂酸可很好地与Mg(OH)2产生包覆作用,经甲苯抽提后,硬脂酸仍对Mg(OH)2产生很好包覆作用,说明这种作用应当是是化学键作用。与硬脂酸图谱比较可以看出,硬脂酸所特有的1700cm-1吸收峰消失,进一步说明硬脂酸与Mg(OH)2之间产生了化学键作用。X射线衍射图如图2(X’Pert Pro X射线粉末衍射仪测试)表征样品的晶体结构,图中,a、b分别是纳米Mg(OH)2微粒和硬脂酸修饰纳米Mg(OH)2微粒的X射线衍射图,可以看出硬脂酸修饰Mg(OH)2并没有改变Mg(OH)2的组成,与Mg(OH)2衍射峰相吻合,结果表明两样品同时符合JCPDS 82-2453,具有六方晶型结构。透射电子显微镜(JEM-2010投射电子显微镜测试)照片如图3,a是直接进行共沸干燥的纳米Mg(OH)2微粒分散在乙醇中的形貌图,可以看出样品的形貌为直径100nm左右的片状物,有一定程度的软团聚现象。b是经硬脂酸改性后的纳米Mg(OH)2微粒分散到氯仿中的形貌图,可以看出,由于硬脂酸一定的空间位阻效应,原来软团聚的纳米Mg(OH)2微粒经硬脂酸改性后,基本呈现单分散现象,仍为片状形貌,大小都没发生变化,改性粉体在水中完全漂浮,分散性能的变化说明硬脂酸能很好地对纳米Mg(OH)2微粒进行表面改性。实例2、向100ml 2mol/L的La(NO3)3溶液中加入0.5g的聚乙二醇4000磁力搅拌呈透明溶液,在电磁搅拌的同时,滴加5ml25-28%的氨水溶液,生成胶状的La(OH)3沉淀。反应在80℃进行2小时后结束,然后放置过夜,过滤,洗涤沉淀,然后把滤饼直接加入到10ml的正丁醇中,超声分散均匀后,再加入0.5ml的油酸继续超声分散,直到成均匀体系后,开始共沸蒸馏,先回流30分钟,再将体系中液体全部馏出,得到表面修饰油酸纳米La(OH)3微粒。实例3、将10ml 25-28%的氨水溶液滴加80ml水、50ml丙酮和20ml乙醇的混合溶液中,搅拌至溶液透明。将10ml 1mol/L的BaCl2溶液在强烈搅拌下缓慢滴加到上述混合液,在75℃时反应8小时,结束后,过滤,洗涤滤饼,直到滤液用0.1mol/L AgNO3溶液检测不出氯离子为止,然后把滤饼直接加入到10ml的正丁醇中,超声分散均匀后,再加入0.5ml的癸酸继续超声溶解,直到成均匀体系后,开始共沸蒸馏,直到体系中液体本文档来自技高网...

【技术保护点】
原位制备改性氢氧化物、含羟基盐、氧化物纳米粉体的方法,其特征在于,把在水或水醇混合体系制备的金属氢氧化物、含羟基金属盐或金属氧化物的纳米量级一次粒子和有机修饰剂均匀分散于有机反应介质正丁醇或苯中,共沸蒸馏进行表面原位反应。

【技术特征摘要】

【专利技术属性】
技术研发人员:张治军李宾杰张予东周惠吴志申党鸿辛
申请(专利权)人:河南大学
类型:发明
国别省市:41[中国|河南]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1