一种利用灰色关联分析法检测风电机组齿轮故障的诊断方法技术

技术编号:16174046 阅读:48 留言:0更新日期:2017-09-09 01:44
一种利用灰色关联分析法检测风电机组齿轮故障的诊断方法,其特征是:步骤一:基于角域信号无量纲因子趋势的故障特征提取;步骤二:通过灰色关联分析法分析参数与故障模式特征之间的关联度,从而得到较为准确的分析结果。本发明专利技术提出阶比重采样法,通过机组检测数据由时域向角域转化处理,完成数据特征从非线性到平稳的过渡,从而考虑到齿轮箱中轴系波动对数据带来的影响。

【技术实现步骤摘要】
一种利用灰色关联分析法检测风电机组齿轮故障的诊断方法
本专利技术涉及一种利用灰色关联分析法检测风电机组齿轮故障的诊断方法,属于故障检测领域。
技术介绍
作为户外发电设备,风力发电机组的运行工况受自然因素影响十分明显。由于风速的随时变化,机组轴系转速也相应的发生变化,造成风电机组运行工况具有较为明显的波动性。齿轮箱是双馈发电机组的重要增速机构,其结构紧凑,部件繁多,长期受到变转速、变载荷的影响,容易发生齿轮表面磨损、点蚀等故障,严重时会造成设备失效。虽然齿轮箱故障占整机故障的比率不算高,但是其故障造成的停机时间较长、电场的经济损失非常大。针对这类问题,国内外学者提出了许多针对齿轮箱故障诊断的分析方法,其中有小波分、神经网络、支持向量机等方法。这些方法虽然能够实现对齿轮箱数据特征的提取与诊断,但是在整个分析过程中,通常只关心不同故障模式下特征参数之间的差异,很少考虑因为齿轮箱中轴系波动对数据带来的影响。同时,在故障诊断过程中,缺乏对参与计算的各个特征参数与故障模式之间联系的深入研究,致使在实际应用中,并不能得到十分理想的效果。受风速影响,风电机组齿轮箱轴系的转速时刻发生改变,监测数据、运本文档来自技高网...
一种利用灰色关联分析法检测风电机组齿轮故障的诊断方法

【技术保护点】
一种利用灰色关联分析法检测风电机组齿轮故障的诊断方法,其特征是:步骤一:基于角域信号无量纲因子趋势的故障特征提取;步骤二:通过灰色关联分析法分析参数与故障模式特征之间的关联度,从而得到较为准确的分析结果。

【技术特征摘要】
1.一种利用灰色关联分析法检测风电机组齿轮故障的诊断方法,其特征是:步骤一:基于角域信号无量纲因子趋势的故障特征提取;步骤二:通过灰色关联分析法分析参数与故障模式特征之间的关联度,从而得到较为准确的分析结果。2.根据权利要求1所述的一种利用灰色关联分析法检测风电机组齿轮故障的诊断方法,其特征是:所述的步骤一包括阶比重采样信号的预处理及机组齿轮箱故障信号的特征提取两个部分。3.根据权利要求2所述的一种利用灰色关联分析法检测风电机组齿轮故障的诊断方法,其特征是:所述的阶比重采样方...

【专利技术属性】
技术研发人员:于广滨陈溪李刚
申请(专利权)人:哈尔滨理工大学
类型:发明
国别省市:黑龙江,23

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1