一种从低分辨率人脸恢复高分辨率人脸的方法技术

技术编号:15879088 阅读:44 留言:0更新日期:2017-07-25 17:05
本发明专利技术公开了从低分辩人脸恢复高分辨率人脸的方法,利用K‑SVD算法分别为高分辨率人脸和对应的低分辨率人脸联合训练得到两个关联的字典,在实际应用中通过交叉查询两个字典,还原完整人脸,该方法可以从模糊的人脸还原出清晰的人脸,有效的扩大现有的人脸识别技术的使用范围,使之成为一种非常有效的技术侦察手段。

Method for recovering high resolution human face from low resolution face

The invention discloses a method for recovering high resolution face from low resolution face, using K SVD algorithm respectively combined training with low resolution face high resolution face and the two associated dictionary, through cross query two dictionaries in the practical application, this method can restore the full face, a sharp reduction from the face fuzzy face, used to expand the scope of existing face recognition techniques effectively, make it become a very effective means of reconnaissance technology.

【技术实现步骤摘要】
一种从低分辨率人脸恢复高分辨率人脸的方法
本专利技术涉及人脸识别
,具体涉及一种从低分辨率人脸恢复高分辨率人脸的方法。
技术介绍
人脸识别作为生物身份识别的典型技术,由于不需要被检测个体的主动配合,近年来在人机交互,安防,身份认证,娱乐,和医疗看护等方面得到大量的应用。人脸识别技术包括:人脸检测,特征提取和特征匹配和分类。人脸检测的方法有:HARR扫描,HOG扫描,ADABOOT扫描,深度学习CNN物体检测等。特征提取的方法有:PCA本征脸,深度学习CNN特征提取等。特征匹配和分类包括:1-NN,k-NN和SVM。将上面提到的各种人脸检测,特征提取和特征匹配的方法有机的结合,就可以得到目前通用的人脸识别技术。现有人脸识别技术中的人脸检测和特征提取都是要求人脸是清晰的。而在现实生活中,当被检测的个人距离摄像头比较远的时候,由于光学限制,得到的人脸照片是模糊的。现有的人脸特征提取技术对瞳孔之间的距离一般都要求达到规定的像素,也就是要求人脸要有一定的清晰度。否则,现有的人脸识别技术就会识别失败。因此急需一种可以从模糊的人脸还原出清晰人脸的方法,来扩大现有人脸识别技术的使用范围。
技术实现思路
针对现有技术的问题,本专利技术提出一种从低分辨率人脸恢复高分辨率人脸的方法,利用K-SVD算法分别为高分辨率人脸和对应的低分辨率人脸联合训练得到两个关联的字典,在实际应用中通过交叉查询两个字典,还原完整人脸,该方法可以从模糊的人脸还原出清晰的人脸,有效的扩大现有的人脸识别技术的使用范围,使之成为一种非常有效的技术侦察手段。本专利技术为解决上述技术问题所采用的技术方案是:本专利技术提供一种从低分辨率人脸恢复高分辨率人脸的方法,包括以下步骤:S1,训练阶段将人脸训练集中的高分辨率人脸图像进行灰度化以及光照均衡化处理,并进行landmark标记,再进行图像大小归一化处理,生成每张人脸对应的高分辨率图像YH及其对应的低分辨率图像YL;再根据K-SVD算法,利用空字典作为初始字典,以高分辨率图像YH和低分辨率图像YL作为字典的输入,对字典进行同步训练,得到相互关联的最优化的高分辨人脸图像对应的字典DH和低分辨率人脸图像对应字典DL;S2,还原识别阶段对输入的模糊人脸图像,进行灰度化以及光照均衡化处理后进行landmark标记,得到模糊的目标人脸对应的图像YL',将图像YL'作为字典DL的输入,根据得到目标人脸图像YL'对应的稀疏系数X,再将稀疏系数X输入字典D根据Y=DX反向查询得到被恢复的高分辨率及清晰的人脸YH'。本专利技术的有益效果是:本专利技术提出了一种从模糊人脸复原/猜测出清晰整张人脸,从而使得现有的人脸识别技术在人脸模糊的情况下仍然可以被使用。附图说明图1为从低分辨率人脸恢复高分辨率人脸的方法具体实施方式下面结合附图及实施例对本专利技术作进一步说明。本专利技术提供一种从低分辨率人脸恢复高分辨率人脸的方法,包括以下步骤:S1,训练阶段将人脸训练集中的高分辨率人脸图像进行灰度化以及光照均衡化处理,并进行landmark标记,再进行图像大小归一化处理,生成每张人脸对应的高分辨率图像YH及其对应的低分辨率图像YL;再根据K-SVD算法,利用空字典作为初始字典,以高分辨率图像YH和低分辨率图像YL作为字典的输入,对字典进行同步训练,得到相互关联的最优化的高分辨人脸图像对应的字典DH和低分辨率人脸图像对应字典DL;具体包括以下子步骤:S101,利用网络爬虫技术从互联网上爬取至少100万张人脸图片,或者通过警方获取人脸图片;训练集中原始人脸图片越多,则训练后得到的字典准确;对人脸图片进行灰度化以及光照均衡化处理,并利用梯度直方图HOG算法和SVM对人脸图片进行landmark标记,并对人脸图片大小做归一化处理,生成高分辨率人脸对应的图像YH;S102,对步骤S101中归一化处理后得到的人脸图片进行模糊处理,即降低图片的分辨率,分别生成n张分辨率呈阶梯式降低的低分辨率人脸图像YLi,0<i<n;优选为3张,分别对应原图像分辨率的50%、25%和15%。S103,利用空字典作为初始字典,将高分辨率人脸图像YH及其对应的3张低分辨率人脸图像YLi作为字典的输入,求解公式得到高分辨率人脸图像YH和低分辨率人脸图像YL1、YL2、YL3对应的最优化字典DH和DL1、DL2、DL3;其中β为低分辨率模糊人脸训练的权重值,取值80~150,使得训练更加偏向于低分辨率模糊人脸;稀疏系数X的阶在20~50之间。S2,识别还原阶段,如图1所示,对输入的模糊人脸图像,进行灰度化以及光照均衡化处理后进行landmark标记,得到模糊的目标人脸对应的图像YL',将图像YL'作为字典DL的输入,根据得到目标人脸图像YL'对应的稀疏系数X,再将稀疏系数X输入字典D根据Y=DX反向查询得到被恢复的高分辨率及清晰的人脸YH'。具体包括以下子步骤:S201,对输入的模糊人脸图像,进行灰度化以及光照均衡化处理;利用梯度直方图HOG算法或SVM对模糊的目标人脸图像进行landmark标记,然后采用图像旋转算法将图像摆正得到处理后的模糊的目标人脸图像YL';S202,将模糊的目标人脸图像YL'依次输入到字典DL1、DL2、DL3进行查询,根据X=D-1Y得到模糊的目标人脸图像YL'对应的稀疏系数X1、X2、X3;S203,将模糊的目标人脸图像YL'对应的稀疏系数X1、X2、X3输入字典DH,进行反向查询得到模糊的目标人脸图像YL'对应的高分辨率人脸图像YH1'、YH2'、YH3',再对3张高分辨率人脸图像进行图像识别。上述方法可以用集成电路,嵌入式电路和云端服务器软件来实现。说明书中未阐述的部分均为现有技术或公知常识。本实施例仅用于说明该专利技术,而不用于限制本专利技术的范围,本领域技术人员对于本专利技术所做的等价置换等修改均认为是落入该专利技术权利要求书所保护范围内。本文档来自技高网...
一种从低分辨率人脸恢复高分辨率人脸的方法

【技术保护点】
一种从低分辨率人脸恢复高分辨率人脸的方法,其特征在于:包括以下步骤:S1,训练阶段将人脸训练集中的高分辨率人脸图像进行灰度化以及光照均衡化处理,并进行landmark标记,再进行图像大小归一化处理,生成每张人脸对应的高分辨率图像YH及其对应的低分辨率图像YL;再根据K‑SVD算法,利用空字典作为初始字典,以高分辨率图像YH和低分辨率图像YL作为字典的输入,对字典进行同步训练,得到相互关联的最优化的高分辨人脸图像对应的字典DH和低分辨率人脸图像对应字典DL;S2,还原识别阶段对输入的模糊人脸图像,进行灰度化以及光照均衡化处理后进行landmark标记,得到模糊的目标人脸对应的图像YL',将图像YL'作为字典DL的输入,根据

【技术特征摘要】
1.一种从低分辨率人脸恢复高分辨率人脸的方法,其特征在于:包括以下步骤:S1,训练阶段将人脸训练集中的高分辨率人脸图像进行灰度化以及光照均衡化处理,并进行landmark标记,再进行图像大小归一化处理,生成每张人脸对应的高分辨率图像YH及其对应的低分辨率图像YL;再根据K-SVD算法,利用空字典作为初始字典,以高分辨率图像YH和低分辨率图像YL作为字典的输入,对字典进行同步训练,得到相互关联的最优化的高分辨人脸图像对应的字典DH和低分辨率人脸图像对应字典DL;S2,还原识别阶段对输入的模糊人脸图像,进行灰度化以及光照均衡化处理后进行landmark标记,得到模糊的目标人脸对应的图像YL',将图像YL'作为字典DL的输入,根据得到目标人脸图像YL'对应的稀疏系数X,再将稀疏系数X输入字典D根据Y=DX反向查询得到被恢复的高分辨率及清晰的人脸YH'。2.根据权利要求1所述的一种从低分辨率人脸恢复高分辨率人脸的方法,其特征在于:所述步骤S1具体包括以下步骤:S101,利用网络爬虫技术从互联网上爬取大量人脸图片,或者通过警方获取人脸图片,图片数目在百万级以上;对人脸图片进行灰度化以及光照均衡化处理,并利用梯度直方图HOG算法和SVM对人脸图片进行landmark标记,并对人脸图片大小做归一化处理,生成高分辨率人脸对应的图像YH;S102,对步骤S101中归一化处理后得到的人脸图片进行模糊处理,即降低图片的分辨率,分别生成n张分辨率呈阶梯式降低的低分辨率人脸图像YLi,0<i<n;S103,利用空字典作为初始字典,将高分辨率人脸图像YH及其对应的n张低分辨率人脸图像YLi作为字典的输入,求解公式得到高分辨率...

【专利技术属性】
技术研发人员:姚琪卓越罗畅刘靖峰
申请(专利权)人:武汉神目信息技术有限公司
类型:发明
国别省市:湖北,42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1