本发明专利技术公开了一种基于光学辅助的SAR图像变化检测方法,属于图像处理技术领域,主要解决SAR图像噪声影响大,分辨率不高,分类不精确的问题。其过程为:用两幅不同时刻的SAR图像构造差异图,应用FCM将像素分为严变、严不变与中间3类。根据每个像素邻域的严变、严不变像素个数,及光学图像各通道拉成列,作为辅助特征,进行聚类,有效克服了SAR图像分类方法杂点过多的缺陷。本发明专利技术具有噪声小,分类精确的优点,有助于后续的分类。
【技术实现步骤摘要】
一种基于光学辅助的SAR图像变化检测方法
本专利技术属于图像处理领域,特别是一种涉及SAR图像变化检测的方法,可应用于环境监测,具体是一种基于光学辅助的SAR图像变化检测方法。
技术介绍
合成孔径雷达(SAR)是一种全天时,全天候对地球进行探测和侦察的高分辨微波成像雷达。SAR能有效识别伪装和穿透掩盖物,因此在遥感测绘、军事侦察、抗震救灾等军事和民用领域得到了广泛应用。SAR图像具有丰富的纹理信息、较强的乘性相干斑噪声等特点。变化检测是遥感技术的主要应用之一,它可以通过对不同时期图像的比较分析,根据图像之间的差异来得到我们所需要的地物变化信息。变化检测技术可以应用于很多方面,如对人工检测比较困难的热带雨林、沙漠等自然条件恶劣的地区进行监测,以了解生态环境变化的情况;对农田进行监测,分析农作物生长状况;对军事目标进行监测,了解兵力部署、军事调动等情报。变化检测技术在城区环境监控领域也有广泛的用途。例如城市的合理规划布局,土地使用的管理和规范,非法占地和违章建筑的监控等。目前SAR图像分类技术发展状况可归纳如下:目前变化检测方法大体上可分为以下几类:一是基于不同时相图像灰度变化的比较,根据图像灰度的差别进行变化检测,如图像差值法、图像比值法和植被指数法。根据不同的应用,常见的有比值植被指数、归一化植被指数、变换植被指数等。二是在不同时相图像的灰度变化的基础上进行相关分析,利用分析的结果进行变化检测,如主成分分析法、分类后比较法、直接多时相分类法和光谱特征分析法。近年来,一些学者提出了许多新方法。一些方法不仅利用图像的灰度特征、形状特征、空间特征,而且利用了图像的纹理特征、结构特征,在处理算法上采用了小波变换、神经网络等;另一些方法在对不同时相图像处理的基础上,再对处理后的图像进一步处理(如统计分析的分类、马尔可夫场的纹理分析),以确定其变化区域。而SAR图像往往存在分辨率不高,噪声点多的缺点,不能满足检测要求。
技术实现思路
本专利技术意在弥补现有SAR图像变化检测技术的缺陷,本专利技术的目的在于提出一种基于光学辅助的SAR图像变化检测方法,通过本专利技术的方法能够减少图像中杂点的影响,得到更精确的检测结果,有助于后续分类的进行,因此能够解决SAR图像往往存在分辨率不高,噪声点多的缺点。本专利技术的目的通过如下技术方案实现:一种基于光学辅助的SAR图像变化检测方法,包括如下步骤:(1)用两幅不同时刻的SAR图像构造差异图D;(2)对步骤(1)得到的差异图进行模糊C均值聚类,将像素分为严变、严不变和中间3类;(3)再计算差异图中每个像素邻域内严变的像素数目与严不变的像素数目,以严变的像素数目和严不变的像素数目分别形成特征向量NumC和NumU;(4)再用光学图像及NumC,NumU作为辅助特征,对严变和严不变像素区域分别求特征中心,再对中间像素进行分类,得到最终的检测结果。所述步骤(1)中,两幅不同时刻的SAR图像构造差异图D的过程包括如下步骤:1a)两幅不同时刻的SAR图像分别为I1和I2,通过I1和I2计算对数比差异图D,增强变化类和非变化类的对比度,SAR图像大小为m×n,则差异图D大小为m×n,m和n均为正整数,则1b)再对差异图进行双边滤波,去除噪声。所述步骤(2)具体包括如下步骤:2a)对差异图进行FCM聚类,得到2个聚类中心c1,c2;2b)设定阈值,分别选出严变与严不变的像素。所述步骤2b)中,选出严变像素的过程包括如下步骤:2b11)将两个聚类中心的像素距离平分成4份,将阈值sh提高到第3份和第4份的分割处,像素值在阈值sh之上;2b12)其8邻域中至少有两个像素值之和高于2倍的普通阈值sn;选出严不变的像素的过程包括如下步骤:2b21)将两个聚类中心的像素距离平分成4份,将阈值sl为第1份和第2份的分割处,像素值在阈值sl之下;2b22)其8邻域中至少有4个像素之和不小于2倍的阈值sl;其余为中间像素;其中:sh=c2-(c2-c1)/4sn=(c1+c2)/2sl=c1+c2。所述步骤(4)具体包括如下步骤:4a)计算特征矩阵:将差异图D拉成列,为DIcol,大小为mn×1,光学图像opt每个波段拉成列,为optcol,大小为mn×3,其中m和n均为正整数,按列归一化后,再将DIcol、optcol、NumC和NumU组合成特征矩阵F=[DIcol,optcol,NumC,NumU];4b)计算严变、严不变区域像素的特征中心;4c)对中间像素进行分类。所述步骤(3)中,采用的像素邻域大小为5×5。与现有技术相比,本专利技术具有如下有益效果:本专利技术的基于光学辅助的SAR图像变化检测方法通过用两幅不同时刻的SAR图像构造差异图,应用FCM将像素分为严变、严不变与中间3类,根据每个像素邻域的严变、严不变像素个数,作为辅助特征,然后用光学图像各通道拉成列,作为辅助特征,进行聚类,有效克服了SAR图像分类方法杂点过多的缺陷。本专利技术对差异图用光学图像进行辅助检测,去除了聚类噪点多的影响;具有噪声小,分类精确,简单快速的特点,有助于后续的分类;仿真结果表明,本专利技术方法能够更加有效的对变化区域进行检测。【附图说明】图1是本专利技术的基于光学辅助的SAR图像变化检测方法的流程图;图2是本专利技术在一组包含城市复杂区域图像上的仿真结果图,其中:图2(a)为伯恩某地区时间1的SAR图像原图;图2(b)为伯恩某地区时间2的SAR图像原图;图2(c)为光学图像原图;图2(d)为参考图像;图2(e)为用FCM方法进行变化检测得到的结果图像;图2(f)为用MRFFCM进行变化检测得到的变化区域结果图;图2(g)为用SC-NSP得到的检测结果图像;图2(h)为通过本专利技术的基于光学辅助的SAR图像变化检测方法处理后的图像。【具体实施方式】下面结合附图和实施例来对本专利技术作进一步的说明:参照图1,结合图2(a)-图2(h),本专利技术的具体实施步骤如下:步骤一、对于两幅不同时刻SAR图像与一幅光学图像,对SAR图像计算对数比差异图;该步骤的具体过程如下:(1a)对不同时刻的两幅图像I1,I2计算对数比差异图D,增强变化类和非变化类的对比度,SAR图像大小为m×n,则差异图D大小为m×n,m和n均为正整数,则(1b)再对差异图进行双边滤波,去除噪声;步骤二、对差异图进行模糊C均值(FCM)聚类,将像素分为严变、严不变和中间3类;该步骤的具体过程如下:(2a)对差异图D进行FCM聚类,得到2个聚类中心c1,c2;(2b)设定阈值,分别选出严变与严不变的像素;选出所有满足以下两个条件的像素,作为严变像素:2b11)将两个聚类中心的像素距离平分成4份,将阈值sh提高到第3份和第4份的分割处,像素值在阈值sh之上;2b12)其8邻域中4个像素值之和高于4倍的普通阈值sn;选出所有满足以下两个条件的像素,作为严不变像素:2b21)将两个聚类中心的像素距离平分成4份,将阈值sl为第1份和第2份的分割处,像素值在阈值sl之下;2b22)其8邻域中至少有4个像素之和不小于2倍的阈值sl;其余为中间像素;sh=c2-(c2-c1)/4sn=(c1+c2)/2sl=c1+c2;步骤三、分别计算每个像素5×5邻域内严变与严不变像素数目,分别构成特征向量NumC本文档来自技高网...

【技术保护点】
一种基于光学辅助的SAR图像变化检测方法,其特征在于,包括如下步骤:(1)用两幅不同时刻的SAR图像构造差异图D;(2)对步骤(1)得到的差异图进行模糊C均值聚类,将像素分为严变、严不变和中间3类;(3)再计算差异图中每个像素邻域内严变的像素数目与严不变的像素数目,以严变的像素数目和严不变的像素数目分别形成特征向量NumC和NumU;(4)再用光学图像及NumC,NumU作为辅助特征,对严变和严不变像素区域分别求特征中心,再对中间像素进行分类,得到最终的检测结果。
【技术特征摘要】
1.一种基于光学辅助的SAR图像变化检测方法,其特征在于,包括如下步骤:(1)用两幅不同时刻的SAR图像构造差异图D;(2)对步骤(1)得到的差异图进行模糊C均值聚类,将像素分为严变、严不变和中间3类;(3)再计算差异图中每个像素邻域内严变的像素数目与严不变的像素数目,以严变的像素数目和严不变的像素数目分别形成特征向量NumC和NumU;(4)再用光学图像及NumC,NumU作为辅助特征,对严变和严不变像素区域分别求特征中心,再对中间像素进行分类,得到最终的检测结果。2.根据权利要求1所述的一种基于光学辅助的SAR图像变化检测方法,其特征在于,所述步骤(1)中,两幅不同时刻的SAR图像构造差异图D的过程包括如下步骤:1a)两幅不同时刻的SAR图像分别为I1和I2,通过I1和I2计算对数比差异图D,增强变化类和非变化类的对比度,SAR图像大小为m×n,则差异图D大小为m×n,m和n均为正整数,则1b)再对差异图进行双边滤波,去除噪声。3.根据权利要求1所述的一种基于光学辅助的SAR图像变化检测方法,其特征在于,所述步骤(2)具体包括如下步骤:2a)对差异图进行FCM聚类,得到2个聚类中心c1,c2;2b)设定阈值,分别选出严变与严不变的像素。4.根据权利要求3所述的一种基于光学...
【专利技术属性】
技术研发人员:杨淑媛,焦李成,马文萍,李倩兰,段韵章,刘志,马宏斌,李剑,张凯,邢颖慧,刘芳,
申请(专利权)人:西安电子科技大学,
类型:发明
国别省市:陕西,61
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。