一种掺杂半导体纳米晶/有机玻璃太阳能荧光聚集器制造技术

技术编号:15856562 阅读:31 留言:0更新日期:2017-07-22 14:51
本发明专利技术涉及一种新型掺杂半导体纳米晶/有机玻璃复合太阳能荧光聚集材料制备方法。掺杂半导体纳米晶可以是Ag掺杂CdS纳米晶、Ag掺杂CdSe纳米晶或者Cu、Co、Mn、Ni掺杂CdS纳米晶。通过纳米晶与MMA单体间的原位聚合反应制备。该方法制备的荧光聚集器,透光度良好,纳米晶在聚合物单体中均匀分散,其荧光量子效率达到42%,能量利用率较高。其斯托克斯位移达到0.95ev,吸收光谱与PL光谱几乎无重叠,避免了光在该荧光聚集器中传播时由自吸收效应导致的能量损失。制备过程在空气中室温下进行,成本低,不需要苛刻的环境条件,过程绿色、环保,并且可以实现从厘米到米级材料的制备,是一种综合性能非常优良的太阳能荧光聚集器材料。

Doped semiconductor nano crystal / organic glass solar energy fluorescent concentrator

The invention relates to a novel preparation method of doped semiconductor nano crystal / organic glass composite solar energy fluorescent aggregation material. The doped semiconductor nanocrystals can be Ag doped CdS nanocrystals, Ag doped CdSe nanocrystals, or Cu, Co, Mn, Ni doped CdS nanocrystals. In situ polymerization between nanocrystals and MMA monomers was prepared. The fluorescent concentrator prepared by the method has good transmittance, and the nanometer crystal is homogeneously dispersed in the polymer monomer, the quantum efficiency of fluorescence is up to 42%, and the utilization rate of the energy is higher. The Stokes shift reaches 0.95ev, and the absorption spectrum has almost no overlap with the PL spectrum, thus avoiding the energy loss caused by the self absorption effect when the light propagates in the fluorescent concentrator. The preparation process in air at room temperature, low cost, no need of severe environmental conditions, the process of green, environmental protection, and can achieve from centimeter to meter scale material preparation, is a very excellent fluorescent solar collector performance materials.

【技术实现步骤摘要】
一种掺杂半导体纳米晶/有机玻璃太阳能荧光聚集器
本专利技术属于能源和环境材料与器件领域,具体涉及一种掺杂半导体纳米晶/有机玻璃(聚甲基丙烯酸甲酯,简称PMMA)太阳能荧光聚集器的制备方法。技术背景当前,全球正面临着能源短缺、环境恶化和气候变暖等问题的严峻挑战,开发和利用清洁的可再生能源是解决上述问题的有效手段。研究表明建筑物对能源的消耗占据了40%,因此,许多研究提出太阳能是最清洁的可再生资源。如何高效实现太阳光的收集和捕获是关键的科学问题与应用前提。太阳能荧光聚集器(LuminescentSolarConcentrators简称LSC)在这一方面有着巨大的应用前景。LSC是一个能够吸收并定向收集太阳光的光学结构。通过这个光学结构,太阳光被太阳能荧光聚集器中的荧光材料吸收并传输到一个很小的面积上(太阳能荧光聚集器的四边)。与传统的太阳能聚光器相比较,LSC有很多优势。首先,它既能聚集太阳的直射光,又能聚集太阳的散射光,受天气因素影响较小,当阴天时,太阳光穿透云层散射传输到地面,LSC也是有效的,因此LSC不需要精确的跟踪系统。并且当用散射的光照射LSC时,其效率比用直射光照射时的效率更高。其次,LSC有一个扩展的表面,荧光在LSC中传播时可损失一部分热量,这样侧面的太阳能电池就可以接收到相对温度较低的光子,降低了聚光带来的热效应,可以提高太阳能电池的效率。从经济效益上看,LSC以其独特的光学结构,吸收大面积的太阳光并传输到侧面很小的太阳能电池上,达到了其聚光的目的,以相对较便宜的造价代替了大面积昂贵的太阳能电池,从而达到了降低太阳能光伏发电成本的目的。从实际用途来看,LSC的平板型结构具备了太阳能光伏与建筑物一体化实现的条件,可以用它来代替部分建筑材料,即用LSC来做建筑物的屋顶和玻璃幕墙,如果选取合适的荧光材料,就不会影响建筑物的正常采光,因此LSC还可以做建筑物的窗户和天窗,既可以用做建筑材料又能够实现光电转化为建筑物供电。在此,LSC内部的荧光材料的选择很重要,需根据太阳光谱和太阳能电池的光响应谱,选择既可以最大限度的吸收太阳光,同时发射峰值又和太阳能电池的最强响应频段相匹配的荧光材料,尽可能的提高LSC的光电转换效率。目前对LSC研究的热点在于其中荧光材料的选择,荧光材料本身的性质决定着LSC的光学性质,无掺杂的量子点荧光材料具有斯托克斯位移较小导致光传播时自吸收较大、荧光量子产率较低,而且较难实现与高分子基体进行本体聚合。而荧光光材料在高分子材料中实现均匀分散并且不产生荧光淬灭也是制备优良LSC的关键。鉴于上述缺陷,本专利技术选择了一价金属(Ag和Cu)离子掺杂的CdS(硫化镉)、CdSe(硒化镉)等II-VI族半导体纳米晶作为荧光材料,本征CdS(硫化镉)、CdSe(硒化镉)的禁带宽度分别为2.4eV及1.8eV,具有优异的可见光响应特性,通过对其进行Ag和Cu金属掺杂后,其掺杂荧光量子产率仍然很高,绝对量子产率达到43%。尤其是因此得到的斯托克斯位移(StokesShift)增大,可达到0.7-0.8eV,因此有效地解决了自吸收的问题,是非常优良的LSC荧光材料选择。本专利旨在实现了上述量子点在块状有机玻璃中的均匀分散,形成宏观尺寸,可达厘米到米级尺寸的块状固溶体,因此实现高效的太阳能荧光聚集器效果。
技术实现思路
本专利技术的目的在于,提供一种新型的掺杂半导体纳米晶/有机玻璃太阳能荧光聚集器,用以解决上述技术缺陷。为实现上述目的,本专利技术采用的技术方案在于,由一价的Ag、Cu、Co等金属离子掺杂的半导体纳米晶在甲基丙烯酸甲酯中分散并原位聚合。实现纳米晶在其中的均匀分散制成。所述异价金属掺杂半导体纳米晶尺寸可为5-10nm实现均匀分散,所制备的块状固溶体具有良好的透光性,保持掺杂纳米晶的荧光量子产率,稳定的掺杂发光,杜绝了自吸收的问题。其次,提供一种制备上述新型的掺杂半导体纳米晶/有机玻璃太阳能荧光聚集器的制造方法,包括如下步骤:步骤1:取一定量的MMA单体置于分液漏斗中,加入等量的0.1mol/L的NaOH水溶液,震荡洗涤随后倒掉下层溶液,再加入等量去离子水重复震荡洗涤2-3次,再将上层液体取出置于烧杯中,加入一定量的无水氯化钙粉体,静置0.5h,过滤,得到纯化的MMA单体,在纯化的MMA单体中溶解一定质量分数的PMMA得到MMA/PMMA混合溶液。步骤2:将制备的金属掺杂(Ag、Cu、Co等)的CdS、CdSe半导体纳米晶置于60℃真空烘箱中抽真空干燥1-2h,随后将干燥得到的纳米晶颗粒分散到纯化的MMA单体或MMA/PMMA混合溶液中,超声震荡1h,得到混合溶胶a。所述金属掺杂半导体纳米晶甲苯溶液摩尔浓度为0.005mol/L;步骤3:将上述的溶胶a置于烧杯中,加入引发剂,震荡均匀置于80-90℃的油浴锅中进行预聚化,期间进行间歇震荡,随着反应进行反应物的粘度将逐渐变大,反应至反应物刚开始出现气泡为止,此时立即将反应物置于冷水中淬灭反应,得到预聚化完成的粘稠液体,此时的固化率约为20-30%;所述引发剂为偶氮二异丁腈,加入的质量分数为800ppm。步骤4:将上述粘液倒入模具并且密封好,置于50℃的烘箱中,固化32h,样品基本固化完成,此时的固化率约为80-90%,再将样品置于120℃烘箱中固化2h,完成最后的固化,此时固化率达到90%以上。所述的模具为玻璃模具。与现有技术相比,本专利技术的有益效果为:1.本专利技术制备的掺杂半导体纳米晶/有机玻璃太阳能荧光聚集器,采用了全新的掺杂半导体纳米晶,并且通过在纳米晶表面原位的本体聚合反应,实现了纳米晶在有机玻璃中的均匀分散,保持了较高的荧光量子产率和发光的稳定性。2.本专利技术所需的掺杂纳米晶,是全新的异价掺杂纳米晶,具有足够大的斯托克斯位移,吸收光谱与荧光光谱重叠非常小,避免了光在其中传播时的自吸收问题,提高了稳定性和使用效率。3.本专利技术提供了半导体纳米晶/有机玻璃太阳能荧光聚集器的制备方法,制造条件温和,装置简单,绿色易行、成本低,可大面积、宏观尺寸(从厘米到米级)制造,具有广阔的应用前景。附图说明图1为LSC的原理图;图2为实施例1制备的不同形状的Ag掺杂半导体纳米晶/PMMA荧光聚集器的外观图;图3为实施例1制备得的Ag掺杂半导体纳米晶在液相的甲苯溶剂中的UV及PL光谱;图4为实施例1制备得的Ag掺杂半导体纳米晶在在固相的PMMA中的UV及PL光谱;图5为实施例2制得的Cu、Co、Ni、Mn掺杂半导体纳米晶/PMMA荧光聚集器外观图及在365nm紫外光下的发光图;图6为实施例2制得的Cu、Co、Ni、Mn掺杂半导体纳米晶/PMMA荧光聚集器的UV光谱。图7为实施例2制得的Cu、Co、Ni、Mn掺杂半导体纳米晶/PMMA荧光聚集器的PL光谱。图8为实施例3制得的Ag掺杂CdSe半导体纳米晶/PMMA荧光聚集器外观图及在365nm紫外光下的发光图(图中文字不具备任何含义,仅用作证明荧光聚集器材料的高透明性)。具体实施方式为了充分说明本专利技术的特性以及实施本专利技术的方式,下面给出实施例。实施例1(1)取5mL所述Ag掺杂CdS半导体纳米晶甲苯溶胶,置于真空干燥箱中,60℃真空干燥1h,得Ag掺杂CdS半导体纳米晶颗粒待用。(2)取100gMMA单体置于本文档来自技高网
...
一种掺杂半导体纳米晶/有机玻璃太阳能荧光聚集器

【技术保护点】
一种新型的掺杂半导体纳米晶/有机玻璃太阳能荧光聚集器(LSC),由一价金属Ag或Cu离子掺杂的II‑VI半导体纳米晶均匀分散在PMMA(聚甲基丙烯酸甲酯)中实现。所述半导体纳米晶的尺寸可为5‑20nm,其特征在于,掺杂纳米晶在PMMA基体中实现均匀分散,具有足够大的斯托克斯位移(达到0.7‑0.8eV),保持了纳米晶的荧光量子产率(绝对量子产率可达42%),避免了传统纳米晶的小斯托克斯位移引起的自吸收问题。制备可在空气中室温下,成本低,不需要苛刻的环境条件,过程绿色、环保。制备的LSC尺寸可达到宏观尺寸,比如从厘米到米级,形状可任意调控。

【技术特征摘要】
1.一种新型的掺杂半导体纳米晶/有机玻璃太阳能荧光聚集器(LSC),由一价金属Ag或Cu离子掺杂的II-VI半导体纳米晶均匀分散在PMMA(聚甲基丙烯酸甲酯)中实现。所述半导体纳米晶的尺寸可为5-20nm,其特征在于,掺杂纳米晶在PMMA基体中实现均匀分散,具有足够大的斯托克斯位移(达到0.7-0.8eV),保持了纳米晶的荧光量子产率(绝对量子产率可达42%),避免了传统纳米晶的小斯托克斯位移引起的自吸收问题。制备可在空气中室温下,成本低,不需要苛刻的环境条件,过程绿色、环保。制备的LSC尺寸可达到宏观尺寸,比如从厘米到米级,形状可任意调控。2.一种制备如权利要求1所述的新型的掺杂半导体纳米晶/有机玻璃复合太阳能荧光聚集器制备方法,其特征在于,包括如下步骤:步骤1:对购得的甲基丙烯酸甲酯(MMA)单体进行纯化,取一定量的MMA单体置于分液漏斗中,加入等量的0.1mol/L的NaOH水溶液,震荡,随后倒掉下层液体,在加入等量去离子水重复震荡洗涤2-3次,随后将上层液体取出置于烧杯中加入一定量的无水氯化钙粉体,静置0.5h,过滤,得到纯化的MMA单体,在纯化的MMA单体中溶解一定质量分数的PMMA得到MMA/PMMA混合溶液。步骤2:将制备的金属掺杂(Ag、Cu、Co、Mn等)半导体纳米晶置于60℃真空烘箱中抽真空干燥1-2h,随后将干燥得到的纳米晶颗粒分散到纯化的MMA单体或MMA/PMMA混合溶液中,超声震荡1h,得到混合溶胶a。步骤3:将上述的溶胶a置于烧杯中,加入引发剂,震荡均匀置于80-90℃的油浴锅中进行预聚化,其特征在于,反应期间进行间歇震荡,随着反应进行反应物的...

【专利技术属性】
技术研发人员:张加涛赵宇恒魏启璘邸秋梅
申请(专利权)人:北京理工大学
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1