包含极性链终止剂的聚酯组合物制造技术

技术编号:1576573 阅读:279 留言:0更新日期:2012-04-11 18:40
为了提高聚酯组合物的熔体强度和增加其在高速剪切下稀化的能力,加入含量为0.05到20%摩尔的极性链终止剂,该终止剂包含非离子基团或用抗衡离子中和的离子基团。任选将最高可达2.0%摩尔的三官能的或更高官能的支化剂加入所述聚酯组合物中。任选加入最高可达30%摩尔的位于链中的极性双官能单体,所述单体包含非离子基团或用抗衡离子中和的离子基团。所述聚酯组合物以100%摩尔的二酸组分和100%摩尔的二元醇组分为基础。(*该技术在2021年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术涉及具有高熔体强度和显示出在高速剪切下稀化的能力的聚合物材料,该聚合物材料易于在挤塑和注塑操作中加工。更具体地说,本专利技术涉及显示出这些特点的某些聚酯组合物。
技术介绍
与许多其它聚合物(例如聚氯乙烯(PVC)、聚烯烃、聚苯乙烯和丙烯酸酯类)相比,聚酯相当难以加工。存在相关困难的原因在于聚酯具有较低的熔体强度和不足的剪切稀化能力,如果在较高的压力下挤出,可导致较大的熔体破裂的倾向。同样,这些聚酯难以注塑,因为需要用较大的压力来注满模具。对薄膜、片材、纤维或型材挤塑来说,熔体强度和剪切稀化都是非常重要的因素。此外,这些相同的因素也可影响注塑(例如,用于瓶子吹塑的型坯的模塑)期间的受控循环时间。因为其它聚合物也有一种或多种它们自身的缺点,所以如果能够克服聚酯的加工障碍,聚酯将是理想的代替材料。零剪切粘度和熔体强度如附图说明图1所示,给定聚合物的粘度曲线有两个重要的区域。一个区域在非常低的剪切速率区,此时粘度最大。将这称为“零剪切粘度”,η0。所述零剪切粘度(随同聚合物的弹性一起)定义熔体强度,因为从模具中脱出后,所述聚合物主要在经受零剪切速率。因此,零剪切粘度越高,熔体强度越高。熔体强度为聚合物的特征,描述了聚合物的“可加工性”的一个方面。将熔体强度定义为聚合物在熔融状态支撑其自身重量的能力。例如,当从模具中垂直挤出时,低熔体强度的聚合物将迅速垂伸并碰到工作台;然而,高熔体强度的聚合物将在相当长的时间内保持其形状。熔体强度对许多加工都是关键的,例如挤坯吹塑、型材挤塑和泡沫生成。对注塑来说,熔体强度在确定模塑件可多快从模具中取出时是重要的。较高的熔体强度意味着较短的冷却和循环时间。具有较高的熔体强度,所述模塑件也可在较高的温度下从模具中取出。对于型材挤塑来说,通常是水平运行的,需要较高的熔体强度来减少聚合物在脱模时经历的由重力引起的垂伸。为了补偿垂伸,可在进行型材挤塑时使用垂伸因子。将垂伸定义为在型材挤塑中模具和引出体系之间厚度的缩减量。将垂伸表示为模具的标称厚度或宽度除以最终模塑件的相同部位的尺度。例如,一般聚酯的垂伸为大约2。这表示最终模塑件的宽度为在模具出口宽度的1/2。当熔体离开模具时,引出机或收卷机的引出力可导致发生垂伸。因为较高熔体强度的聚合物具有对垂伸更大的抵抗力,所以产生的垂伸较小。PVC,一种高熔体强度的聚合物,一般具有大约1.25的垂伸。当使用垂伸接近1.0的聚合物时,更容易设计模具并且可更精确地保持最终模塑件的尺寸。许多定量的和定性的方法可用于测定熔体强度。在美国专利号4,398,022中公开了一种标准试验,其中用于挤坯吹塑加工的聚酯的熔体强度测定值在-10%和10%之间。本文采用了这个相同的测试,并且包括垂直地从直径为0.1英寸(0.25cm)、长为0.25英寸(0.64cm)的毛细管模具中以20s-1的剪切速率挤出聚合物,直到总长为19英寸(49cm)。然后,在靠近模头面的地方切断挤出物。将所得的聚合物线材水平地放在平面上并且让其在室温下冷却。然后从线材的末端(6-英寸处)测定6英寸(15cm)处的直径,并且表示为关于毛细管直径变化的百分比,这样就给出了熔体强度。例如,如果在6-英寸处线材的直径为0.12英寸(30cm),则在给定熔融温度下的熔体强度为20%(也就是MS=(0.12-0.1)/0.1×100)。同样,通过从挤出物的末端测定1/2英寸(1.3cm)处的直径得到 “离模膨胀”,并且将其表示为关于毛细管直径变化的百分比。聚酯可具有负的熔体强度值,因为在6英寸处的直径可小于标称直径。这表示较差的熔体强度。例如,用1,4-环己烷二甲醇(PETG)改性的线性聚(对苯二甲酸乙二醇酯)具有0.76dl/g的特性粘度(IV),可观察到其在200℃具有-4%的熔体强度并且在220℃具有-24%的熔体强度。因此,在6英寸处比模口小4%(在200℃下取样)。一般地,PVC在标准加工条件下(160到200℃的加工温度)的熔体强度大约为20到30%。线性PETG要达到这个熔体强度,则需要IV大约为0.95d1/g。因此,对熔体强度较为关键的应用来说,聚酯一般不会取代这些竞争性聚合物。另一个普遍的熔体强度试验包括测定挤出物在模具下以给定的流速/剪切速率到达预定长度所用的时间。虽然这个试验不是标准化的测试方法,但是提供了一种在典型的加工线上对比材料的简单方法,并且在本文引用的某些实施例中使用。也可使用其它非标准的熔体强度试验,如在水平式型材挤塑线上测定平持热垂的程度,给出更具应用性的测试熔体强度的特殊方法。高剪切粘度和剪切稀化参见图1,在粘度曲线中另一个重要的区域是高剪切速率区域。在这个区域聚合物的“加工”是在模具/挤出机中用大约10s-1到1000s-1的剪切速率实施。为了减少螺杆的马达载荷,并且为了最大程度地降低泵压和减少熔体破裂,需要在这个区域的粘度尽可能低。在高剪切速率下容易流动是聚合物的“可加工性”的第二个方面。如果树脂不能经模具挤出和泵出,那么具有高熔体强度是不足够的。幸运的是,大部分聚合物在较高剪切速率下都显示了至少若干程度的粘度减少或“剪切稀化”,这有助于它们的可加工性。如没有剪切稀化,挤出机加工高熔体粘度的聚合物需要非常高的马达载荷和/或非常高的熔融温度,两者都会导致聚合物降解和过度的能量消耗。在高剪切速率下(也就是在模具中)具有低粘度也有助于最大程度地在挤出部件或制品的表面形成熔体破裂或“鲨皮斑”。熔体破裂是一种流动不稳定的现象,这种现象在热塑性聚合物挤出时,在二次加工表面/聚合物熔融界面发生。发生熔体破裂会造成从模孔挤出的挤出物表面严重不整齐。裸眼可看出这种在发生熔体破裂的样品的表面粗糙度为无光或消光的外观,相反没有熔体破裂的挤出物显得透明。只要模具中的壁剪切应力超过某个值(一般为0.1到0.2MPa)就会发生熔体破裂。可通过体积挤出量或线速度(代表剪切速率)和聚合物熔体的粘度来控制壁剪切应力。通过降低线速度或高剪切速率下的粘度,可降低壁剪切应力,减少发生熔体破裂的可能性。因此,通过提高剪切稀化的程度,从而降低在高剪切速率下的粘度,这可在发生熔体破裂之前采用较高的线速度。理想的聚合物如果将所有这些需要的性能结合在一起,那么从可加工性的观点来看,理想的聚合物显然具有高的零剪切粘度,同时具有高的剪切稀化程度。这使得熔体强度最大化,同时使熔体破裂和模压最小化。对于注塑来说,在高剪切速率下的低粘度将使得聚合物易于流入模具中。但是,一旦停止流动并且消除剪切力,聚合物迅速地变得具有高粘度,这样所述模塑件可迅速地从模具中取出。类似的情形出现在油漆中,人们希望当将油漆涂刷到表面上时流体容易流动或剪切稀化,但是在施涂后,即是剪切速率降低后不会流淌或滴落。压敏粘合剂也需要类似的可加工性,这样粘合剂在施加压力/应力前应该不流动和粘合。和所述理想的聚合物形成对比,缩聚物如聚碳酸酯和聚酯具有比加成型聚合物如PVC和聚烯烃低得多的剪切稀化程度。这是因为缩聚物除了没有在许多加成聚合物中普遍存在的高分子量“尾”外,一般具有较窄的分子量分布。这种窄分子量分布使聚酯更具“牛顿型流动性(Newtonian-tike)”(也就是具有平直的粘度曲线,而不是很依赖于剪切速率),其特征为难于加工本文档来自技高网...

【技术保护点】
一种聚酯组合物,所述聚酯组合物包括众多浓度为0.05到20%摩尔的极性链终止基团,所述极性链终止基团具有选自以下的结构:(i) -O-*-X(ii) -O-*-*(iii) -O-R’-X(iv) -O-R’”-R”-X 或其混合物;其中X为非离子极性基团或用抗衡离子中和的离子极性基团;R为芳族或脂族基团;R’为脂族基团;R”为芳族基团;并且R’”为脂族基团;其中所述聚酯组合物以100%摩尔的二酸组分和100%摩尔的二元醇组分为基础,并且所述极性链终止基 团的摩尔百分比为结构(i)和(ii)的二酸组分的一部分和结构(iii)和(iv)的二元醇组分的一部分。

【技术特征摘要】
...

【专利技术属性】
技术研发人员:MD舍尔比TE龙MA斯特兰德
申请(专利权)人:伊斯曼化学公司
类型:发明
国别省市:US[美国]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利