当前位置: 首页 > 专利查询>东南大学专利>正文

一种等离极化激元横向异质集成的太阳电池制造技术

技术编号:15693106 阅读:79 留言:0更新日期:2017-06-24 07:40
本发明专利技术公开了一种等离极化激元横向异质集成的太阳电池。本发明专利技术采用n型有机聚合物材料与p型硅衬底构成的异质结作为可见光波段的子电池,并在电池的制备过程中引入等离激元陷光结构,实现电池对可见光波段光的高效吸收;采用传导型表面等离极化激元(SPP)纳米锥晶体阵列结构与n型有机聚合物材料层作为红外波段的子电池,通过设计纳米锥阵列的尺寸和形貌,利用太阳光中长波段的入射光在纳米锥与n型有机聚合物界面激励起SPP模式波,通过分离与收集该模式波通过能量转化得到的电子空穴对,实现对特定波段的红外光的响应或红外波段宽光谱的响应。该电池设计可综合解决传统多结电池中的晶格匹配及成本高问题,大幅降低电池材料成本。

A laterally polarized heterogeneous integrated solar cell

The present invention discloses a laterally polarized heterogeneous integrated solar cell. The invention adopts the heterogeneous n type organic polymer materials and P type silicon substrate structure formed by the as visible light batteries in the battery, and the preparation process of introducing plasmon light trapping structure, to achieve efficient battery absorption of visible light wave light; the conduction type of surface plasmon polaritons (polarization SPP) nanotaper crystal array structure and N type organic polymer material layer as the sub cell infrared band, the size and morphology of nano cone array design, the use of long wavelength incident sunlight in the light at the interface with the N type organic polymer nano cone excitation SPP mode wave, by separating and collecting the wave mode conversion the energy of the electron hole pairs, in response to the realization of response to a specific band of infrared light or infrared spectral width. The design of the battery can solve the problem of lattice matching and high cost in the traditional multi junction battery, and greatly reduce the cost of the battery material.

【技术实现步骤摘要】
一种等离极化激元横向异质集成的太阳电池
本专利技术属于太阳能电池
,具体是一种等离极化激元横向异质集成的太阳电池。
技术介绍
随着石化能源的枯竭,太阳能电池技术得到飞速发展,并有望代替传统化石能源,成为未来的主流能源。在太阳能电池的研究中,更高效率、更低成本的电池是永恒不变的主题。传统太阳能电池,以半导体原料为主,需要掺杂构成PN结,但是基于PN结的太阳能电池难以实现能量低于半导体带隙的光子的能量利用与转换,这不仅限制了电池光电转换效率的提升,还会因红外光的产热效应造成太阳能电池的老化甚至破裂。此外,在传统半导体太阳能电池加工过程中,需高温条件且工艺复杂,制造成本高,研制低成本、超宽谱吸收的太阳能电池是该领域面临的主要挑战。相关研究表明,有机聚合物和半导体材料可形成异质结,用于光电转换。相比于半导体晶体材料,有机聚合物材料可采用液相旋涂、卷对卷等低成本工艺大面积制备,并可方便地在聚合物功能层中增加各种纳米功能结构,为电池中的光学运筹和电子设计提供了全新的手段,也为电池光谱响应及光电转换效率的提升提供了新的发展方向。目前,有机导电材料与半导体构成的异质结电池在紫外及可见光波段的光吸收效率仍具有较大提升空间,并且该类电池的吸收限仍由半导体材料带隙决定,不能利用低于半导体带隙的光能。近年来,人们在突破传统半导体的红外吸收极限,实现传统太阳电池材料无法吸收利用的红外光的有效利用方面做出了大量工作,研究表明,表面等离激元金属微纳结构与半导体界面在入射光的激励下,能产生传导型的表面等离极化激元波(SPP),该种异质结能有效收集SPP波非辐射跃迁效应产生的“热电子”,实现光能到电能的转换。这类异质结构甚至在中远红外波段,都能有效实现光电转换。此外,在传统有机导电材料与半导体构成的异质结电池中镶嵌等离激元陷光结构也能够提高太阳电池的效率,利用等离激元陷光结构局域场增强特性、散射增强特性及良好的导电性等实现光电转化效率的提高。然而,目前的大多成熟的工艺和器件结构,都无法实现该种局域型或传导型等离激元结构的设计与制备,也就无法利用这种表面等离激元效应实现增效。
技术实现思路
技术问题:本专利技术的目的是解决已有太阳能电池光电转换效率低,宽光谱响应差、成本高等技术问题,提出一种等离极化激元横向异质集成的太阳电池,同时实现了电池的较低成本,开路电压、短路电流的提升,具有宽谱光电响应及较高的光电转换效率。技术方案:为解决上述技术问题,本专利技术提出一种等离极化激元横向异质集成的太阳电池,该太阳电池由透明导电薄膜层、纳米锥晶体阵列结构、等离激元陷光结构、n型有机导电材料层、p型硅衬底、背电极;其位置关系,由上至下依次为透明导电薄膜层、n型有机导电材料层、p型硅衬底、背电极,其中纳米锥晶体阵列结构在p型硅衬底上,上部与透明导电薄膜层紧密接触,其下部与n型有机导电材料层与纳米锥晶体阵列结构紧密接触;等离激元陷光结构分散在有机导电材料层中或者分散在有机导电材料层与p型硅衬底界面处;纳米锥晶体阵列结构与n型有机导电材料层在横向上构成异质结,n型有机导电材料层与p型硅衬底构成异质结,这两种异质结均与透明导电薄膜层和背电极形成导电通路。透明导电薄膜层,供选材料为氧化铟锡(ITO)、掺铝氧化锌(AZO)或掺氟氧化锡(FTO),厚度为10纳米到100纳米。纳米锥晶体阵列结构,供选材料为金、银或钯材料,间距为10纳米到100纳米,底部直径为10纳米到50纳米,高度为500纳米到1000纳米。等离激元陷光结构,供选材料为金、银或钯材料,采用的形状为圆片、椭圆片、四边形片或六边形片,尺寸为10纳米到50纳米。n型有机导电材料层,厚度为10纳米到100纳米。p型硅衬底,厚度为1微米到100微米。背电极,供选材料为金、铟、铝或铟镓混合物,厚度为10纳米到100纳米。本专利技术从原理上看,实现如下:该电池以SPP纳米锥晶体阵列结构与n型有机聚合物材料在横向上构成的异质结作为红外波段的子电池,以n型有机导电材料层与p型硅衬底构成的异质结作为可见波段子电池。当太阳光入射到电池表面的纳米锥晶体阵列结构时时,通过设计特定单元尺寸的纳米锥,使得该结构对红外波段的光可高效的响应。入射光在纳米锥晶体阵列结构与n型有机导电材料层界面处激励起高度局域于界面的SPP模式波,该波在非辐射衰减过程中以电子空穴对的形式被n型有机导电材料层吸收,由于n型有机导电材料层极薄(避免了再次复合造成的热损耗),电子空穴对在扩散过程中进入p型硅衬底,最终被电池的前后电极所收集,提高了电池对红外波段太阳光的响应度。同时,利用n型有机导电材料层吸收可见波段光的特性及等离激元陷光结构易于引入有机聚合物材料的工艺特点,通过等离激元陷光结构光局域增强特性、强散射特性及良好的导电性增加可见波段的光在n型有机导电材料层与p型硅衬底构成的异质结电池中的有效光程,降低入射光的直接反射损失,进一步增强该电池对可见波段太阳光的吸收,利用较低的材料成本提高了电池在可见波段的光电转化效率。有益效果:本专利技术与现有的技术相比具有以下的优点:1、提出一种等离极化激元横向异质集成的太阳电池,该电池以传导型SPP纳米锥晶体阵列结构与n型有机聚合物在横向上构成异质结构,针对传统电池在红外波段较低的吸收系数从而难以吸收红外波段的光以及电池热损耗高等问题,通过设计SPP纳米锥晶体阵列结构的尺寸与形貌,使得不同波长的红外光能量分布于不同尺寸、形貌的SPP纳米锥晶体阵列结构中,可实现对红外特定波长光的响应,或可实现对红外波段光宽光谱响应,降低热损耗,提高电池在红外宽光谱波段的光电转化效率。2、提出一种等离极化激元横向异质集成的太阳电池,该电池以n型有机导电材料层层与p型硅衬底形成异质结构,针对传统电池对可见波段的光的吸收效率不高,所选用三五族半导体材料价格昂贵及与硅衬底晶格匹配等问题。利用有机聚合物材料成本低、工艺简单及可大批量制备的优势,同时结合等离激元陷光结构易于引入有机导电材料的工艺特点,利用等离激元陷光结构光局域增强特性、强散射特性及良好的导电性进一步增强该电池对可见波段太阳光的吸收,利用较低的材料成本提高了电池在可见波段的光电转化效率。附图说明图1是该等离极化激元横向异质集成的太阳电池的整体结构图。图2是该等离极化激元横向异质集成的太阳电池中纳米锥晶体阵列单元结构图。图中有透明导电薄膜层1、纳米锥晶体阵列结构2、纳米锥单元结构21、等离激元陷光结构3、n型有机导电材料层4、p型硅衬底5、背电极6。具体实施方式以下结合附图对本专利技术的技术方案作进一步描述。如图1所示,该太阳电池由透明导电薄膜层1、纳米锥晶体阵列结构2、等离激元陷光结构3、n型有机导电材料层4、p型硅衬底5和背电极6构成;其位置关系,由上至下依次为透明导电薄膜层1、n型有机导电材料层4、p型硅衬底5、背电极6,其中纳米锥晶体阵列结构2在p型硅衬底5上,上部与透明导电薄膜层1紧密接触,其下部与n型有机导电材料层4与纳米锥晶体阵列结构2紧密接触;等离激元陷光结构3分散在有机导电材料层4中或者分散在有机导电材料层4与p型硅衬底5界面处;纳米锥晶体阵列结构2与n型有机导电材料层4在横向上构成异质结,n型有机导电材料层4与p型硅衬底5构成异质结,这两种异质结均与透明导电薄膜层1本文档来自技高网
...
一种等离极化激元横向异质集成的太阳电池

【技术保护点】
一种等离极化激元横向异质集成的太阳电池,其特征在于,该太阳电池由透明导电薄膜层(1)、纳米锥晶体阵列结构(2)、等离激元陷光结构(3)、n型有机导电材料层(4)、p型硅衬底(5)和背电极(6)构成;其位置关系,由上至下依次为透明导电薄膜层(1)、n型有机导电材料层(4)、p型硅衬底(5)、背电极(6),其中纳米锥晶体阵列结构(2)在p型硅衬底(5)上,上部与透明导电薄膜层(1)紧密接触,其下部与n型有机导电材料层(4)与纳米锥晶体阵列结构(2)紧密接触;等离激元陷光结构(3)分散在有机导电材料层(4)中或者分散在有机导电材料层(4)与p型硅衬底(5)界面处;纳米锥晶体阵列结构(2)与n型有机导电材料层(4)在横向上构成异质结,n型有机导电材料层(4)与p型硅衬底(5)构成异质结,这两种异质结均与透明导电薄膜层(1)和背电极(6)形成导电通路。

【技术特征摘要】
1.一种等离极化激元横向异质集成的太阳电池,其特征在于,该太阳电池由透明导电薄膜层(1)、纳米锥晶体阵列结构(2)、等离激元陷光结构(3)、n型有机导电材料层(4)、p型硅衬底(5)和背电极(6)构成;其位置关系,由上至下依次为透明导电薄膜层(1)、n型有机导电材料层(4)、p型硅衬底(5)、背电极(6),其中纳米锥晶体阵列结构(2)在p型硅衬底(5)上,上部与透明导电薄膜层(1)紧密接触,其下部与n型有机导电材料层(4)与纳米锥晶体阵列结构(2)紧密接触;等离激元陷光结构(3)分散在有机导电材料层(4)中或者分散在有机导电材料层(4)与p型硅衬底(5)界面处;纳米锥晶体阵列结构(2)与n型有机导电材料层(4)在横向上构成异质结,n型有机导电材料层(4)与p型硅衬底(5)构成异质结,这两种异质结均与透明导电薄膜层(1)和背电极(6)形成导电通路。2.根据权利要求1所述的一种等离极化激元横向异质集成的太阳电池,其特征在于,透明导电薄膜层(1),供选材料为氧化铟锡ITO、...

【专利技术属性】
技术研发人员:张彤张晓阳王善江苏丹
申请(专利权)人:东南大学
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1