The method discloses an image depth estimation method based on sparse laser observation, which proposes a dense reconstruction based on monocular images by sparse observation of single line or multi line laser. By constructing the reference depth map and the residual depth map, the depth neural network is trained to make full use of the sparse observation depth information. Compared with the method of depth estimation by using only monocular images, the method has obvious advantages.
【技术实现步骤摘要】
一种基于稀疏激光观测的图像深度估计方法
本专利技术涉及场景深度估计领域,尤其涉及一种基于单目图像和稀疏激光的场景稠密深度估计方法。
技术介绍
人类基于丰富的经验和不断地学习,从单目图像也具有估计图像中物体远近的能力,即一定程度上的深度估计能力。近年来,机器学习方法也在模仿人类这一深度估计能力上取得了显著进展,其中尤以数据驱动的深度学习技术表现突出。这一技术避免了手工特征设计过程,基于原始的单目RGB图像学习特征,并输出对于图像对应深度的预测。Eigen等人首次提出了基于深度学习的单目深度估计,他们构造了一个两阶段的深度估计网络,第一个阶段生成粗略估计并在第二阶段进行精细微调。随后,他们将该工作扩展为同时估计场景深度、深度法向量以及场景语义,并验证了同时估计深度法向量以及语义信息有助于场景深度估计性能提升。Liu等人探讨了结合深度学习与条件随机场的深度估计,对图像进行超像素分割,并对所有超像素构造条件随机场进行优化。Li和Wang分别在其上进行了扩展,通过分层的条件随机场逐层从超像素层面向像素层面优化。尽管这些方法验证了从单目图像估计深度的可能,实际上单目图像本身是尺度信息缺失的。Eigen等人也提到,基于单目图像的深度估计可能存在一个全局的偏差。
技术实现思路
本专利技术的目的在于结合稀疏的单线激光信息估计图像稠密深度,以减小场景深度估计全局偏差,获得可信度更高的场景深度估计。为实现上述目的,本专利技术基于深度学习方法,以单目图像和稀疏单线激光为输入,自主学习特征并得到稠密深度估计,训练过程的具体步骤如下:一种基于稀疏激光观测的深度图像估计方法,其特征在于它包 ...
【技术保护点】
一种基于稀疏激光观测的深度图像估计方法,其特征在于它包括如下步骤:步骤一,为将稀疏单线激光信息稠密化,所述稀疏激光包括单线激光和多线激光,其中以稀疏激光中的单线激光构造参考深度图与残差深度图,在三维空间中对单线激光中的每个激光点以垂直地面的方向进行拉伸,得到一个与地面垂直的参考深度面;根据单目相机与单线激光的校准信息,将三维空间中得到的参考深度面投影到单目相机获取图像的像平面上,得到一个与所述图像对应的参考深度图,将通过深度传感器获取的绝对深度图与参考深度图做差,得到残差深度图;步骤二,将单目相机获取的单目图像以及按步骤一所述得到的参考深度图作为训练数据,训练卷机神经网络估计对应的残差深度图;步骤三,将卷机神经网络估计的残差深度图与参考深度图相加,得到估计的绝对深度图,称为绝对深度估计图,并在此基础上进一步构造优化的卷机神经网络,;该优化的卷机神经网络与步骤二所述用于估计残差深度的卷机神经网络可以叠加在一起,进行端到端优化,即输入单目图像与参考深度图,输出得到经过优化的绝对深度估计图。
【技术特征摘要】
1.一种基于稀疏激光观测的深度图像估计方法,其特征在于它包括如下步骤:步骤一,为将稀疏单线激光信息稠密化,所述稀疏激光包括单线激光和多线激光,其中以稀疏激光中的单线激光构造参考深度图与残差深度图,在三维空间中对单线激光中的每个激光点以垂直地面的方向进行拉伸,得到一个与地面垂直的参考深度面;根据单目相机与单线激光的校准信息,将三维空间中得到的参考深度面投影到单目相机获取图像的像平面上,得到一个与所述图像对应的参考深度图,将通过深度传感器获取的绝对深度图与参考深度图做差,得到残差深度图;步骤二,将单目相机获取的单目图像以及按步骤一所述得到的参考深度图作为训练数据,训练卷机神经网络估计对应的残差深度图;步骤三,将卷机神经网络估计的残差深度图与参考深度图相加,得到估计的绝对深度图,称为绝对...
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。