两级两相流化床自结晶处理高氟、高硬度废水方法及系统技术方案

技术编号:15316290 阅读:251 留言:0更新日期:2017-05-15 23:11
本发明专利技术提供了一种两级两相流化床自结晶处理高氟、高硬度废水方法及系统,其包括:两个自结晶流化床反应器:分别记为一级反应器、二级反应器;药剂A投加装置、药剂B投加装置、一级物料池及二级物料池;其中,原水池通过进水管路经由进水泵与一级反应器的进水口相连;药剂A投加装置通过药剂A加药管路与一级反应器的加药口相连;一级反应器的排渣口通过一级反应器排泥管与所述一级物料池相连;一级反应器的出水口通过一级出水管路与所述二级反应器的进水口相连;药剂B投加装置通过药剂B加药管路与二级反应器的加药口相连;二级反应器的排渣口通过二级反应器排泥管与所述二级物料池相连;二级反应器的出水口通过二级出水管路与回收装置相连。

Method and system for treating high fluorine and high hardness waste water by two stage two phase fluidized bed self crystallization

The invention provides a level two two-phase fluidized bed self crystallization treatment of high fluorine, high hardness wastewater treatment method and system, which includes: two self crystalline fluidized bed reactor were recorded as a reactor, two stage reactor; A reagent dosing device, pharmaceutical dosage of B device, a material pool and the two stage material pool; among them, the original water tank through a water inlet pipe through the water inlet water pump and a reactor connected; reagent A dosing device through A reagent dosing pipe and a reactor dosing port connected to a reactor; discharging port through a reactor sludge discharge pipe and the level the material tank is connected with a water outlet; the water inlet of a reactor outlet pipe and the two stage reactor are connected through; reagent B dosing device by reagent B and two dosing pipe reactor dosing outlet is connected; two stage reactor slag mouth The sludge discharging pipe of the two stage reactor is connected with the two level material tank, and the water outlet of the two stage reactor is connected with the recovery device through a two stage water outlet pipe.

【技术实现步骤摘要】
两级两相流化床自结晶处理高氟、高硬度废水方法及系统
本专利技术涉及一种两级两相流化床自结晶处理高氟、高硬度废水方法及系统,属于废水处理

技术介绍
废水处理领域里,利用向废水中投加某种化学物质,使该化学物质和其中某些溶解物质产生反应,生成难溶盐而沉淀下来的方法,称为化学沉淀法。沉淀的形成经历着一个从无到有、从小到大的发生和发展的过程,这一过程十分复杂。简单地说,沉淀形成的过程包括晶核的形成(成核作用)和沉淀颗粒的成长两个过程。(1)晶核的形成—均相成核或异相成核,即:构晶离子在静电作用下均相成核形成离子对,离子对再形成离子聚集体;或者构晶离子在诱导作用下异相成核直接形成离子聚集体,然后由均相成核或异相成核形成的离子聚集体再形成小晶粒;(2)沉淀颗粒的成长(或晶核的成长)—生成晶形沉淀或无定形沉淀,即:小晶核形成小沉淀微粒,然后小沉淀微粒再通过定向排列形成晶形沉淀,或通过凝聚形成无定形沉淀。传统的化学沉淀法除氟、除硬,即是运用化学沉淀原理(溶度积原理),借助化学药剂将氟离子、钙离子、镁离子转化成氟化钙、碳酸钙和氢氧化镁沉淀的过程,但此过程产生沉淀的往往是无定形沉淀,该无定形沉淀是由许多微小的沉淀颗粒疏松地聚集在一起而形成,沉淀颗粒的排列杂乱无序,其中又常包含有大量的水分及其他杂质,所以是疏松的絮状沉淀,整个沉淀的体积较大,因此其工艺过程往往需配有混凝、沉淀或澄清过程与其同时进行。传统沉淀工艺中,为加速沉淀而采取过量加药、投加混凝剂等措施,又增加了污泥的杂质,使得沉淀污泥无回收利用价值,增加了污泥处理的难度,且污泥体积大、含水率高,污泥的另行处置甚至比水处理更难。由于晶形沉淀内部离子规则排列,结构紧密,若能使沉淀结果为晶形沉淀,则可大大提高沉淀效率,其好处在于:晶形沉淀致密、易沉淀到池底,无需投加混凝药剂,污泥体积大为减小,含水率低,易于回收利用或最终处置。近年来,“诱导结晶沉淀技术”得到较快发展,该技术以诱导结晶为原理,并结合流化床或填料床反应器形式,所用结晶反应器内需要预置载体或填料作为晶种,使要去除的物质在晶种上发生诱导结晶反应,从而沉积在晶种上,然后通过底部排泥达到处理目的。诱导结晶的核心原理是:诱导作用下的异相成核→定向排列生长→生成晶形沉淀。晶种的作用在于:由于晶种的存在,沉淀反应的活化能降低,从而使溶液中较低饱和度的沉淀物质得以在晶种表面沉淀反应,以晶体的形式生长。为实现诱导结晶,要尽量避免沉淀物的构晶离子过饱和度较大,以免碳酸钙或氟化钙自发成核,这些细小晶体不能附着于晶种表面,会随着出水流出反应器,造成出水浊度增大。目前以诱导结晶沉淀技术处理高氟高硬废水,主要基于诱导结晶原理,举例如下:(1)《造粒反应器处理高硬度水试验研究》,顾艳梅,许航,孙宇辰等,土木建筑与环境工程,Vol.37,No.3,2015。文中所用技术是:采用流化床反应器,以一定粒径的细砂为晶种,运行过程中,细砂表面不断吸附反应中形成的碳酸钙,细砂的重量逐渐增加,流化床状态的平衡被打破,砂石填料渐渐沉在反应器底部,此时砂石填料失效,需将失效的填料取出,替换成新填料。试验在pH>12、砂石填料粒径为0.2-0.5mm等条件下获得较好效果,生成的碳酸钙晶体附着于细砂填料表面,运行15d左右填料表面所附着的碳酸钙晶体达到饱和,需将沉下的填料取出,更换成新的填料。(2)《流化床结晶法处理高浓度含氟废水》,李程文,中南大学,环境工程硕士论文,2011。以诱导结晶为原理,采用流化床工艺处理含氟废水,预先向流化床中添加氟化钙晶种,再让废水与钙液进入流化床,使氟离子与钙离子晶种的表面异相成核长大。出水PH=6-8,出水浊度控制在50NTU以下,氟回收率高达96%。生成的氟化钙产品粒度均匀,平均粒径100微米,可以作为萤石级氟化钙产品使用。(3)《载体诱导沉淀结晶法软化水及脱氟的研究》,陈平,西安建筑科技大学,环境工程博士论文,2004。文中系统地研究了石英砂诱导CaCO3沉淀反应动力学、热力学及其诱导机理,石英砂诱导沉淀结晶软化水,石英砂诱导CaF2结晶脱氟及其诱导机理。(4)荷兰的DHV公司和台湾工业化研究院,已成功实现了流化床结晶技术的工业化,其采用诱导结晶法,所用除氟沉淀剂为氯化钙,反应前需单独加碱调节废水pH至中性;所用除钙沉淀剂为氢氧化钠;运行前及运行过程中都需要不断地投加晶种,一般为石英砂。刘维锐在《高效结晶除硬技术处理高盐废水的研究》(内蒙古大学,环境工程硕士论文,2014)中提出了一种“处理浓盐水自结晶软化工艺”。该工艺适用于钙镁硬度均较高,且具有较高碱度的RO浓水除硬,其典型运行条件为:沉淀剂为NaOH,生成沉淀CaCO3、Mg(OH)2;结晶反应器以搅拌为混合动力;以pH为结晶主要控制参数,除钙结晶反应器pH=9.5-10.2(优选为9.8-10.0),除镁结晶反应器pH=11-11.5。已授权的有关废水除氟、废水软化的专利较少,且与本专利技术均不相同或相似,具体如下:(1)中国专利CN101941752A公开了一种含氟废水的处理方法及装置。该专利技术提供一种含氟废水的处理方法及装置,以固液两相流化床为结晶反应器,在反应器中加入一定量的氟化钙晶种,将含氟废水与含钙沉淀剂按反应配比送入固液流化床处理装置,使氟离子沉淀于氟化钙晶种表面上,沉降后得到的砂状氟化钙沉淀污泥回收,一级处理水经进一步混凝沉降后达标排放。这种方法在流化床结晶沉淀过程中能沉淀大部分氟离子,所产生的砂状氟化钙含水率低,氟化钙含量高,可作为氟资源回收利用;一级处理水的混凝沉降过程中絮凝剂用量少,污泥产生量少,因此废水处理综合成本低。(2)中国专利CN104860446A公开了一种高硬度工业水软化分离方法以及系统。该专利技术公开了一种高硬度工业水软化分离方法,包括:在污泥池中调节高硬度工业水的pH值至8-10,使水中成垢离子形成沉淀物;将污泥池中形成沉淀的工业水输送到中空纤维膜浓缩装置,通过膜分离方法获得软化水。该专利技术采用膜分离方法,不同于本专利技术的化学自结晶除硬方法。
技术实现思路
为了解决上述的缺点和不足,本专利技术的目的在于提供一种自结晶流化床反应器。本专利技术的目的还在于提供包含上述自结晶流化床反应器的两级两相流化床自结晶处理高氟、高硬度废水的系统。本专利技术的目的还在于提供应用上述系统的两级两相流化床自结晶处理高氟、高硬度废水的方法。为达到上述目的,一方面,本专利技术提供一种自结晶流化床反应器,该自结晶流化床反应器包括:反应器筒体;设置于反应器筒体底部的布水器22,反应器运行时,布水器22下方为配水区23、布水器22上方空腔将形成流化床层24;反应器筒体顶部周边设有收水堰26,该收水堰26下方为固液分离区25,该固液分离区25及流化床层24之间设置有环状收水管27;反应器筒体侧壁设有进水口30、排渣口31、加药口32、出水口33、及取样管35,其中,所述进水口30、排渣口31分别位于布水器22的下方、上方;所述加药口32位于反应器筒体中部;所述出水口33位于反应器顶部侧壁;反应器筒体侧壁上方和底部连接有循环水系统28,该循环水系统28包括循环泵、出水管路及回水管路;其中,出水管路的一端与所述环状收水管27相连,出水管路的另一端经由循环泵再通过回水管路与反应器筒本文档来自技高网
...
两级两相流化床自结晶处理高氟、高硬度废水方法及系统

【技术保护点】
一种自结晶流化床反应器,其特征在于,该自结晶流化床反应器包括:反应器筒体;设置于反应器筒体底部的布水器(22),反应器运行时,布水器(22)下方为配水区(23)、布水器(22)上方空腔将形成流化床层(24);反应器筒体顶部周边设有收水堰(26),该收水堰(26)下方为固液分离区(25),该固液分离区(25)及流化床层(24)之间设置有环状收水管(27);反应器筒体侧壁设有进水口(30)、排渣口(31)、加药口(32)、出水口(33)、及取样管(35),其中,所述进水口(30)、排渣口(31)分别位于布水器(22)的下方、上方;所述加药口(32)位于反应器筒体中部;所述出水口(33)位于反应器顶部侧壁;反应器筒体侧壁上方和底部连接有循环水系统(28),该循环水系统(28)包括循环泵、出水管路及回水管路;其中,出水管路的一端与所述环状收水管(27)相连,出水管路的另一端经由循环泵再通过回水管路与反应器筒体的底部相连接;所述取样管(35)均匀分布于循环水系统(28)出水管路和布水器(22)之间的反应器筒体侧壁上;优选地,所述取样管(35)为3‑4根。

【技术特征摘要】
1.一种自结晶流化床反应器,其特征在于,该自结晶流化床反应器包括:反应器筒体;设置于反应器筒体底部的布水器(22),反应器运行时,布水器(22)下方为配水区(23)、布水器(22)上方空腔将形成流化床层(24);反应器筒体顶部周边设有收水堰(26),该收水堰(26)下方为固液分离区(25),该固液分离区(25)及流化床层(24)之间设置有环状收水管(27);反应器筒体侧壁设有进水口(30)、排渣口(31)、加药口(32)、出水口(33)、及取样管(35),其中,所述进水口(30)、排渣口(31)分别位于布水器(22)的下方、上方;所述加药口(32)位于反应器筒体中部;所述出水口(33)位于反应器顶部侧壁;反应器筒体侧壁上方和底部连接有循环水系统(28),该循环水系统(28)包括循环泵、出水管路及回水管路;其中,出水管路的一端与所述环状收水管(27)相连,出水管路的另一端经由循环泵再通过回水管路与反应器筒体的底部相连接;所述取样管(35)均匀分布于循环水系统(28)出水管路和布水器(22)之间的反应器筒体侧壁上;优选地,所述取样管(35)为3-4根。2.根据权利要求1所述的自结晶流化床反应器,其特征在于,所述排渣口(31)上方设置有用于与酸洗装置相连的酸洗进药口(34);且布水器(22)上方及下方的反应器筒体侧壁上连接有酸洗循环系统(29),该酸洗循环系统(29)包括酸洗循环泵及酸洗出水管路、酸洗回水管路,其中,所述酸洗出水管路设置于布水器(22)上方且位于酸洗进药口(34)的下方;所述酸洗回水管路位于布水器(22)下方。3.根据权利要求1或2所述的自结晶流化床反应器,其特征在于,反应器筒体的固液分离区(25)设有可拆卸的斜管填料或斜板填料(36),且该斜管填料或斜板填料(36)固定在收水堰下方的反应器筒壁上。4.一种两级两相流化床自结晶处理高氟、高硬度废水的系统,其包括:两个权利要求1-3任一项所述的自结晶流化床反应器:分别记为一级反应器(1)、二级反应器(2);药剂A投加装置(3)、药剂B投加装置(4)、一级物料池(7)及二级物料池(9);其中,原水池通过进水管路(15)经由进水泵(5)与一级反应器(1)的进水口相连;药剂A投加装置(3)通过药剂A加药管路(13)与一级反应器(1)的加药口相连;一级反应器(1)的排渣口通过一级反应器排泥管(17)与所述一级物料池(7)相连;一级反应器(1)的出水口通过一级出水管路(11)与所述二级反应器(2)的进水口相连;药剂B投加装置(4)通过药剂B加药管路(14)与二级反应器(2)的加药口相连;二级反应器(2)的排渣口通过二级反应器排泥管(19)与所述二级物料池(9)相连;二级反应器(2)的出水口(33)通过二级出水管路(12)与回收装置相连;优选地,所述一级物料池(7)及二级物料池(9)内底部均设有栅网。5.根据权利要求4所述的系统,其特征在于,该系统还包括酸洗装置(10),所述酸洗装置(10)通过一级酸洗管路(20)、二级酸洗管路(21)分别与一级反应器(1)的酸洗进药口、二级反应器(2)的酸洗进药口相连。6.一种两级两相流化床自结晶处理高氟、高硬度废水的方法,其是采用权利要求4或5所述的两级两相流化床自结晶处理高氟、高硬度废水的系统实现的,其特征在于,该方法包括以下步骤:启动阶段:(1)、首先将原水按最大水力停留时间计算出的流量注入一级反应器,至一级反应器内的液位淹没循环水系统的出水管路;同时投加药剂A至一级反应器的空腔内;然后启动循环水系统,回流水送至一级反应器配水区与原水混合后,再通过布水器均匀上升至一级反应器的空腔内,使一级反应器内废水上升流速达到最小设计上升流速,形成过饱和溶液;在一级反应器内的循环流动过程中,Ca2+与F-或Ca2+与CO32-的过饱和溶液发生自结晶反应,生成CaF2或CaCO3细小晶体粒子,随后形成流化态颗粒床层;(2)、一级出水自流进入二级反应器配水区,至二级反应器内的液位淹没循环水系统的出水管,同时投加药剂B至二级反应器空腔内;然后启动二级反应器循环水系统,回流水送至二级反应器配水区与一级出水混合后,再通过布水器使混合后的废水均匀上升至二级反应器的空腔内;此条件下形成过饱和溶液;在二级反应器内的循环流动过程中,Ca2+与CO32-的过饱和溶液发生自结晶反应,生成CaCO3细小晶体粒子,随后形成流化态颗粒床层;启动阶段,二级出水中[Ca2+]、[F-]浓度较高,因此还需将二级出水返回原水池继续处理;优选地,当去除目标为氟离子时,启动阶段一级反应器的参数:药剂A为CaO或Ca(OH)2与CaCl2的混合液,其中,CaCl2占干物质混合物总质量的0~25%;药剂A按[Ca2+]/[F-]摩尔比=1.5~2:1进行添加;所述最大水力停留时间为4~5h,所述一级反应器内pH值=6~7.5,所述最小设计上升流速为4-10m/h;启动阶段二级反应器的参数:药剂B为Na2CO3的水溶液,其按[Ca2+]/[CO32-]摩尔比=1:1.5~2进行添加;所述一级出水的最大水力停留时间为1~1.5h;所述混合后的废水上升流速达到10~20m/h,并控制二级反应器内的pH值=9~10;还优选地,当去除目标为暂时钙硬度时,启动阶段一级反应器的参数:药剂A为CaO或Ca(OH)2的乳浊液,其投加量按水中总碱度的2~2.5倍计,所述最大水力停留时间为1~1.5h,所述一级反应器内pH值9.5~10,所述最小设计上升流速为10-20m/h,启动阶段二级反应器的参...

【专利技术属性】
技术研发人员:梁思懿刘寅刘全金杜兵祝群力李杰尹航曹建平何然王珊
申请(专利权)人:中冶京诚工程技术有限公司北京市环境保护科学研究院
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1