一种长程光学表面面形检测系统技术方案

技术编号:14923944 阅读:104 留言:0更新日期:2017-03-30 16:06
本发明专利技术提供一种长程光学表面面形检测系统,包括移动光学头和f-θ角度检测系统,所述移动光学头包括尾纤以及形成等效五棱镜的分束镜和凹面镜,其中,所述移动光学头设置为通过所述尾纤将输入的光束出射,以使所述光束透过所述分束镜后入射到待测光学器件的表面上,再经所述待测光学器件的表面反射回所述分束镜,并通过所述分束镜将部分反射回的所述光束反射到所述凹面镜,并通过所述凹面镜沿垂直于所述待测光学器件表面对应测量点的法线的方向反射至所述f-θ角度检测系统,以在所述f-θ角度检测系统中形成测量光斑。本发明专利技术减少了引入误差的反射、透射光学器件的数目,并减少了测量不同角度时测量光束横移引入的系统误差,提高了测量精度。

【技术实现步骤摘要】

本专利技术涉及高精度镜面面形检测领域,特别涉及一种长程光学表面面形检测系统
技术介绍
由于X射线具有很强的穿透性,因而在很多应用领域均有采用,例如:同步辐射光源、自由电子激光、大型天文望远镜等均会采用长度达1米左右的大尺寸反射镜面对X射线进行反射或聚焦,为了保证X射线的光学品质(如方向性、相干性),或为了将X射线聚焦到纳米量级的光斑,通常要求这些大尺寸反射镜面具有纳米级的高精度和纳弧度级的倾斜度精度。对于如此高精度的大尺寸镜面而言,其加工和检测都是世界性难题,而检测又是加工高精度镜面的前提。基于细光束扫描测量的长行程面形仪(LongTraceProfile,LTP)是目前检测此类大尺寸高精度镜面面形的主要仪器之一,其通过引入一束准直细光束对待测光学器件表面经行逐点扫描,然后通过依次测量待测光学器件表面上各测量点反射光束的角度变化值来对光学器件面形进行检测。虽然长行程面形仪只能对待测面形进行一维检测,只能检测低频面形信息,而且检测过程耗时长,但由于其具有采用非接触检测模式、不需要大尺度的光学参考元件、投入成本相对较低、能对大尺寸高精度面形进行检测等优点,在过去的20多年长行程面形仪得到了长足发展,出现了LTP-I、LTP-II、LTP-V、PP-LTP(五棱镜长行程面形仪)、在线LTP、多功能LTP、NOM(纳米光学检测仪)等基于细光束扫描检测原理的长行程面形仪。其中NOM是目前世界上精度最高的面形检测仪器之一。随着科学技术的发展,新的应用领域对高精度反射镜面的检测提出了更高的要求,如在第三代同步辐射线站建设及自由电子激光等领域,为了保证X射线的高通量、高相空间亮度、高相干性,要求所用到的反射镜面的面形误差低于0.1urad。在对此类高精度、大尺度、大曲率的面形进行更高要求检测时,现有长行程面形仪检测系统中各光学元件引入的误差逐渐显现出来,成为检测精度提高的主要制约因素之一。已知的是,检测系统中光学元件误差主要表现在两个方面:1、透射光学元件折射率不均匀,当检测光束入射到这类光学元件上时,不同位置的入射光束会产生不同角度的偏折;2、反射光学元件反射面不理想,测量光束在这类反射面的不同位置会产生与理想反射角度不同的角度偏离。在运用长行程面形仪对待测镜面进行检测时,只有角度的相对变化量是有意义的,如果在测量不同角度时各光学元件引入的误差相同或差别很小,对角度的相对变化值而言这类系统误差是可以忽略的。但在实际测量时,测量光束将随着测量角度的变化在系统中各光学器件上产生横移。如图1所示的pp-LTP,其包括激光光源1'、固定光学头、移动光学头以及f-θ角度检测系统,固定光学头包括位相板2'、分束镜3'和平面反射镜4',移动光学头包括五棱镜5',f-θ角度检测系统包括FT(傅里叶变换)透镜7'和面阵探测器8'。当光束从五棱镜5'垂直入射到待测镜面6'后,若待测镜面6'上测量点处不水平,反射光线将与入射光线成一定角度反射,设此角度为θ角,则五棱镜5'上的距离s即表示θ等于0°与θ不等于0°时反射光束在五棱镜5'的反射面上产生的横移量。从图1可以看出,测量光束是从待测镜面6'上测量点处开始偏移,所以待测镜面6'上的测量点是pp-LTP中各光学元件横移量计算的参考点,因而对于同样的偏转角度,系统中的光学器件距离待测镜面6'上测量点的几何光程越远,测量光束在该光学器件上的横移量越大,正是这种横移使得系统中各光学器件引入了不同点的误差。测量系统中所用到的透射、反射光学器件越多,测量光束产生的横移量越大,则引入的系统误差越大。在现实中,完美的光学器件是没有的,如果能通过特殊的设计减少系统中所用到的光学器件,且对于剩下的光学器件减少测量光束在该光学器件上的横移,则可极大的减少或消除此类系统误差。因此亟待提供一种这样的检测系统。
技术实现思路
本专利技术的目的旨在提供一种高精度的长程光学表面面形检测系统,以减少检测系统中引入误差的反射、透射光学器件的数目,并减少测量不同角度时测量光束横移引入的系统误差。为实现以上目的,本专利技术采用以下技术方案:一种长程光学表面面形检测系统,包括移动光学头和f-θ角度检测系统,其中,所述移动光学头包括一尾纤以及形成等效五棱镜的一分束镜和一凹面镜,其中,所述移动光学头设置为通过尾纤将输入的光束出射,以使所述光束透过所述分束镜后入射到待测光学器件的表面上,再经所述待测光学器件的表面反射回所述分束镜,并通过所述分束镜为将部分反射回的所述光束反射到所述凹面镜,并通过所述凹面镜沿垂直于所述待测光学器件表面对应测量点的法线的方向反射至所述f-θ角度检测系统,以在所述f-θ角度检测系统中形成测量光斑。优选地,所述尾纤的光束出射点经所述分束镜透射成像的像点与所述凹面镜经所述分束镜反射成像的中心点重合。优选地,所述凹面镜与所述尾纤的光束出射点的几何光程等于所述凹面镜的焦距,进一步地,所述f-θ角度检测系统包括傅里叶变换透镜和面阵探测器,所述傅里叶变换透镜设置为将自所述凹面镜反射的光束汇聚后传输至所述面阵探测器,并在所述面阵探测器上形成所述测量光斑。进一步地,所述面形检测系统还包括耦合光纤和光源,且所述耦合光纤连接在所述尾纤的入射端与所述光源之间。优选地,所述光源为非相干光源。进一步地,所述面形检测系统还包括光学平台和线性平移台,所述线性平移台位于所述光学平台上,所述移动光学头安装在所述线性平移台。优选地,所述f-θ角度检测系统设置在所述光学平台的侧壁上。优选地,所述移动光学头还包括一壳体,所述尾纤、分束镜和凹面镜设置在所述壳体中。优选地,所述凹面镜的口径约为所述测量光斑的两倍。综上所述,本专利技术的移动光学头中的折射、反射光学器件只有分束镜及凹面镜,由于在不同角度测量时凹面镜的整个光学面均会用到,因此可以认为凹面镜对于不同角度的测量值引入了相同的误差,所以凹面镜引入的系统误差对测量结果的相对变化量没有影响,也就是说,系统中真正引入误差的只有分束镜,由此减少了引入系统误差的光学元件数目。此外,在本专利技术的测量过程中,不同角度的测量光束均通过凹面镜的中心点反射至f-θ角度检测系统形成测量光斑,因而与现有技术相比,横移量的计算参考点由待测光学器件的测量点转移到了凹面镜的中心点,由于分束镜与凹面镜均位于移动光学头中并形成了等效五棱镜,因而两者结构紧凑间距较小,从而减少了光束在分束镜上的横本文档来自技高网
...
一种长程光学表面面形检测系统

【技术保护点】
一种长程光学表面面形检测系统,用于对待测光学器件的表面进行面形检测,包括移动光学头和f‑θ角度检测系统,其特征在于:所述移动光学头包括一尾纤以及形成等效五棱镜的一分束镜和一凹面镜,其中移动光学头设置为通过所述尾纤将输入的光束出射,使光束透过所述分束镜后入射到待测光学器件的表面上,再经待测光学器件的表面反射回所述分束镜,并通过所述分束镜将部分反射回的光束反射至所述凹面镜,并通过所述凹面镜沿垂直于待测光学器件表面对应测量点的法线的方向反射至所述f‑θ角度检测系统,从而在所述f‑θ角度检测系统中形成测量光斑。

【技术特征摘要】
1.一种长程光学表面面形检测系统,用于对待测光学器件的表面进行面
形检测,包括移动光学头和f-θ角度检测系统,其特征在于:
所述移动光学头包括一尾纤以及形成等效五棱镜的一分束镜和一凹面镜,
其中移动光学头设置为通过所述尾纤将输入的光束出射,使光束透过所述分
束镜后入射到待测光学器件的表面上,再经待测光学器件的表面反射回所述
分束镜,并通过所述分束镜将部分反射回的光束反射至所述凹面镜,并通过
所述凹面镜沿垂直于待测光学器件表面对应测量点的法线的方向反射至所述
f-θ角度检测系统,从而在所述f-θ角度检测系统中形成测量光斑。
2.根据权利要求1所述的长程光学表面面形检测系统,其特征在于,所
述尾纤的光束出射点经所述分束镜透射成像的像点,与所述凹面镜经所述分
束镜反射成像的中心点重合。
3.根据权利要求1所述的长程光学表面面形检测系统,其特征在于,所
述凹面镜与所述尾纤的光束出射点的几何光程等于所述凹面镜的焦距。
4.根据权利要求1所述的长程光学表面面形检测系统,其特征在于,所
述f-θ角度检测系统包括一傅里叶变换...

【专利技术属性】
技术研发人员:彭川黔何玉梅王劼
申请(专利权)人:中国科学院上海应用物理研究所
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1