一种基于核功率密度的无线信道多径分簇方法技术

技术编号:14693276 阅读:207 留言:0更新日期:2017-02-23 16:10
一种基于核功率密度的无线信道多径分簇方法,信号由发射机历经多径到达接收机,MIMO信道被建模为双方向性信道,并且双方向性脉冲响应包括多径的功率、时延、离开角以及达到角,信道中的多径信号呈现成簇现象,在同一个簇中的多径信号拥有相似的功率、时延以及角度参数,其特征在于,所有的多径参数都利用高分辨率算法(例如,MUSIC、CLEAN、SAGE、RiMAX)从实际测试数据中进行估计,考虑在一个时间时刻内多个簇中的多条多径分量,而这些多径分量由功率、时延、DOD以及DOA进行表示。本发明专利技术采用核密度等解决技术问题的新手段,能够更好地识别多径分量的本地密度变化,不需要簇的先验信息,是可满足未来无线通信领域面向簇结构的信道处理技术。

【技术实现步骤摘要】

本专利技术涉及一种基于核功率密度的无线信道多径分簇方法,用于无线通信系统中面向传播信道建模,属于无线移动通信领域。
技术介绍
信道建模是无线通信中一个重要的研究方向,因为准确的信道模型是开展任意无线通信系统设计与性能分析的前提。信道建模的主要目的在于准确刻画不同环境中的多径信号的统计分布规律。在描述无线信道多径统计分布规律的模型中,抽头延迟线(TappedDelayLine,TDL)模型颇具代表性,该模型在时延域将信道描述为由大量多径叠加而形成,并且包含了小尺度衰落特性。TDL模型在较长时间内被广泛使用,并且在早期的无线通信系统,如COST207模型中被采纳为标准化信道模型。然而,3G、4G以及下一代通信系统需要更高的带宽以及更大维度的多天线(multiple-input-multiple-output,MIMO)阵列。基于此,信道多径分量在时延域与角度域具有更高的分辨率,从而使得可以更详细地刻画多径分量的统计分布特征。然而,这同时也意味着在对大量多径分量进行统计建模过程更复杂。大量的MIMO信道测量数据显示,在实际环境中多径分量是成簇分布的。多径成簇这一特性可以在信道建模过程中加以利用,从而在保持建模准确性的前提下降低模型复杂度。最早出现的涵盖多径簇结构的信道模型是SV(Saleh-Valenzuela)模型,在该模型中,多径分量基于实测数据在时延域被分成了不同的簇。此外,有学者提出了一种更适合MIMO信道的几何的随机信道模型(GSCM),将SV模型中多径时延簇延伸到了时延与角度两个维度中。在过去20年中,多径成簇的现象在许多环境中被广泛观测到,同时基于簇结构的信道模型也被广泛地应用于标准化信道模型中,例如COST259、COST2100、3GPP空间分布信道模型(SCM)以及WINNER模型中。虽然多径成簇的概念在信道建模中被广泛认可,但是建立合适的多径分簇算法依旧是一个热门的课题。在过去,通过人体肉眼鉴别开展多径分簇的方法使用了很长一段时间。然而,即便人体视觉可以有效地从噪声中鉴别多径的结构与模式,但是,这一方法面对海量测量数据则显得过于繁琐。因此,基于簇结果的信道建模需要一种通过精密设计的自动分簇算法。虽然分簇算法(在机器学习领域多称为“聚类算法”)在机器学习领域一直以来都是一个热门研究课题,但在无线通信领域中信道多径分簇问题仍属于新兴学科。由于描述实际传播信道中多径分量的参数有很多,包括功率、时延、角度等,并且这些参数都具有真实的物理含义以及不同的统计特性,因此,多径分簇最大的挑战就在于如何将这些参数的影响考虑在分簇算法内。当只考虑功率和时延信息的情况下,存在一些多径分簇算法,然而,此类算法仅在多径分量的时延域范围内适用,无法用于MIMO信道(涵盖多径角度域分布特征)多径分簇。当前,考虑了所有多径参数(功率、时延、角度)、适用于MIMO信道多径分簇的算法主要归纳如下:在一文献中,见N.Czink,P.Cera,J.Salo,E.Bonek,J.-P.Nuutinen,andJ.Ylitalo,“AframeworkforautomaticclusteringofparametricMIMOchanneldataincludingpathpowers,”inProc.IEEEVTC’06,2006,pp.1–5,K-Power-Means(KPM)算法被提出,该算法将多径功率的影响在计算簇中心的过程中考虑了进来,并且使用了多径距离来定义不同多径分量之间的相似性。在另外一文献中,见C.Schneider,M.Bauer,M.Narandzic,W.Kotterman,andR.S.Thoma,“ClusteringofMIMOchannelparameters-performancecomparison,”inProc.IEEEVTC’09,2009,pp.1–5,Fuzzyc-means算法被改进并用于多径分簇,研究表明,该算法在随机初始化的条件下性能优于KPM算法。虽然过去十年对于无线信道多径自动分簇算法的研究取得了一些进展,但是现有工作依旧具有以下局限性:●多径分量的许多参数的统计特征并未考虑在分簇算法中。不同于机器学习中人为生成的数据,实际场景中的多径信号是由物理环境所产生,并且具有确定的内在物理特征。这些多径分量的物理规律应该在分簇算法中考虑进来。例如,许多测量显示多径簇的角度分布通常服从拉普拉斯分布,然而,该特性并未在现有的分簇算法设计中被考虑进来。●既有算法中多径簇的数目通常需要作为已知信息以输入分簇算法。虽然存在许多验证指标可以对簇的数目开展估计,但是任何指标都无法保证总能正确预测多径簇数目。大多数的研究依旧运用视觉识别的方式在环境中得到最佳的簇数目,这大大降低了自动分簇算法的效率。●大多数的分簇算法依旧需要许多人工输入的预设参数。例如,在KPM算法中,簇的初始信息(时延和角度)需要被定义,并且时延与角度的权重参数也需要反复调整从而获得合理的输出结果,这些参数的定义往往非常主观。此外,在实际的测量数据中找出合理的初始化参数本身也具有很高的难度。因此,有必要建立一种人为预设参数更少、更易于调整的多径分簇算法。
技术实现思路
本专利技术的目的是提供一种基于核功率密度的无线信道多径分簇方法,其是一种全新的MIMO信道多径分簇方法.为此,本专利技术的目的是提供一种基于核功率密度的无线信道多径分簇方法,信号由发射机历经多径到达接收机,MIMO信道被建模为双方向性信道,并且双方向性脉冲响应包括多径的功率α、时延τ、离开角ΩT以及达到角ΩR,信道中的多径信号呈现成簇现象,在同一个簇中的多径信号拥有相似的功率、时延以及角度参数,其特征在于,所有的多径参数都利用高分辨率算法(例如,MUSIC、CLEAN、SAGE、RiMAX)从实际测试数据中进行估计,考虑在一个时间时刻内M个簇中的T条多径分量,而这些多径分量由功率α、时延τ、DODΩT以及DOAΩR进行表示。根据本专利技术,核密度考虑了多径分量的统计特性,并且也考虑了多径功率;根据本专利技术,在密度估计过程中仅考虑了K个最近的多径分量,从而能够更好地识别多径分量的本地密度变化,该方法可以有效服务于MIMO信道的多径分簇,并且不需要簇的先验信息(例如簇的数目以及初始位置等);根据本专利技术,具有相对较低的计算复杂度,能够满足未来无线通信领域面向簇结构的信道建模需求。现有技术中,从来没有人考虑过“多径分量的统计分布特性”,这并非是因为以往受到计算手段(例如曾经的计算尺、算盘、采用穿孔带进行数据输入的单板机、计算器、电子管计算机、以及IBM工作站等)的能力限制,而是因为“本领域的技术人员”一直没有找到合适的方法去考虑它,不清楚如何在聚类问题中对它进行描述,也不清楚如果将它与聚类问题相结合。本专利技术创造性地提出了“核函数”这个解决技术问题的手段,才把“多径分量的统计分布特性”成功地考虑了进来,即巧妙、又有效地解决了实时通讯领域的技术问题。现有技术中,“多径分量功率”的考虑方法方式与本专利技术截然不同,是在描述多径信号空间间距的过程中把功率因子加权进来的,而本专利技术是在核函数里面引入了功率变量,变成了核功率密度。因此,本专利技术同时考虑“多径分量的统计分布特性”和“多径分量功率”本文档来自技高网
...
一种基于核功率密度的无线信道多径分簇方法

【技术保护点】
一种基于核功率密度的无线信道多径分簇方法,信号由发射机历经无线信道多径传播后到达接收机(是未来无线通信领域面向簇结构的信道处理技术),其特征在于,包括如下步骤:1)利用多天线信道探测仪实时采集信道数据,获得连续时刻下信道冲激响应数据,通过先入先出控制器实时地存放在第一存储介质;2)第一存储介质中的原始采样数据被输送至串‑并转换器,通过数个“参数估计”处理器同时对各路并行的基带原始数据进行参数估计,获得每一路并行数据(其对应不同时刻的测试数据)所对应的多径样本信号,之后再被输送至并‑串转换器,所得结果存放在第二存储介质(这样,由于使用了多个“参数估计处理器”,使得有新数据进入第一存储介质时,“参数估计1”处理器已经完成了对之前数据的估计处理,从而保证了系统处理的实时性;另外,经并‑串转换器后存放在第二存储介质的只是多径信号的功率、时延、角度等统计特性参数,它比原始信道数据占用空间更小,更易于实时处理);3)信道探测仪至少具有8个处理器(它们也可以是一个处理器的不同存储区域),即处理单元1‑8,用于后续FPGA分簇处理,前后处理单元之间利用移位寄存器传递数据,各处理单元共享系统时钟且并行处理;4)将第二存储介质中的多径信号读入信道探测仪内部“处理单元1”,以矩阵单元的形式依次存放;5)在“处理单元2”中设置一个计数器,其初值为0;在“处理单元2”所存储的这个逻辑空间内,对任意一个多径信号x以欧氏距离的方式依次搜索距离它最近的多径信号,每搜到一个多径信号,则将其存入“处理单元3”中,同时令“处理单元2”中计数器加1;6)利用“处理单元3”中所存放的所有多径信号以及“处理单元2”中多径信号x数据及多径信号各个参数的统计分布特性,得出x的原始核功率密度,存储在信道探测仪内“处理单元4”中;7)基于“处理单元3”中的数据在内部处理器中计算x的相对核功率密度,删除掉“处理单元4”中原先存放的原始核功率密度数据,将新的相对核功率密度数据存放在“处理单元4”中(所存储的相对核功率密度代表了该多径信号在后处理中的重要程度,其值越大,表明该多径信号在后续信道探测仪的内部处理中所占的权重越大);8)将“处理单元2”中的计数器值归零,重复步骤5)‑7),直至完成对“处理单元2”中所有多径信号相对核功率密度的计算,将所获得的相对核功率密度数据全部存放在“处理单元4”中;9)在“处理单元4”中搜索相对核功率密度为1的多径信号,将所有这些相对核功率密度为1的多径信号的编号以及其在“处理单元2”中所对应的空间坐标存储在“处理单元5”里,这些多径信号是后续处理中建立多径成簇关系的初始中心点,即“初始多径核心点单元”;10)在信道探测仪的“处理单元2”里,借助空间坐标及“处理单元4”数据搜索任意多径信号x附近,距离它最近、相对核功率密度又比它大的多径信号,将这个多径信号称之为x的高密度最近邻信号,二者存在“逻辑连通关系”,并将其编号存放在“处理单元6”的高密度最近邻矩阵中;11)重复步骤10),直至完成对“处理单元2”里所有数据的计算,将所有获得的高密度最近邻信号编号及“逻辑连通关系”编号存放在“处理单元6”的高密度最近邻矩阵中;12)通过数据检索的方法,对每一个存放在存储器里的多径数据进行排查判决,建立存储器中所有存放的多径信号之间的初始成簇关系,这样,完成了对“处理单元2”中所有多径信号归属关系的初始分簇,将每一个多径信号的分簇编号存放在“处理单元7”中;13)继续通过数据检索的方法,对“处理单元7”中的每个多径信号的分簇编号进行更新;14)找出“处理单元7”中所有出现的编号值,统计它们的总个数,并重新将它们按顺序序列编排,删除不连续的序号,将所得结果存入“处理单元8”中;15)将信道探测仪“处理单元8”中的结果存入第三存储介质,多径信号的分簇过程结束。...

【技术特征摘要】
1.一种基于核功率密度的无线信道多径分簇方法,信号由发射机历经无线信道多径传播后到达接收机(是未来无线通信领域面向簇结构的信道处理技术),其特征在于,包括如下步骤:1)利用多天线信道探测仪实时采集信道数据,获得连续时刻下信道冲激响应数据,通过先入先出控制器实时地存放在第一存储介质;2)第一存储介质中的原始采样数据被输送至串-并转换器,通过数个“参数估计”处理器同时对各路并行的基带原始数据进行参数估计,获得每一路并行数据(其对应不同时刻的测试数据)所对应的多径样本信号,之后再被输送至并-串转换器,所得结果存放在第二存储介质(这样,由于使用了多个“参数估计处理器”,使得有新数据进入第一存储介质时,“参数估计1”处理器已经完成了对之前数据的估计处理,从而保证了系统处理的实时性;另外,经并-串转换器后存放在第二存储介质的只是多径信号的功率、时延、角度等统计特性参数,它比原始信道数据占用空间更小,更易于实时处理);3)信道探测仪至少具有8个处理器(它们也可以是一个处理器的不同存储区域),即处理单元1-8,用于后续FPGA分簇处理,前后处理单元之间利用移位寄存器传递数据,各处理单元共享系统时钟且并行处理;4)将第二存储介质中的多径信号读入信道探测仪内部“处理单元1”,以矩阵单元的形式依次存放;5)在“处理单元2”中设置一个计数器,其初值为0;在“处理单元2”所存储的这个逻辑空间内,对任意一个多径信号x以欧氏距离的方式依次搜索距离它最近的多径信号,每搜到一个多径信号,则将其存入“处理单元3”中,同时令“处理单元2”中计数器加1;6)利用“处理单元3”中所存放的所有多径信号以及“处理单元2”中多径信号x数据及多径信号各个参数的统计分布特性,得出x的原始核功率密度,存储在信道探测仪内“处理单元4”中;7)基于“处理单元3”中的数据在内部处理器中计算x的相对核功率密度,删除掉“处理单元4”中原先存放的原始核功率密度数据,将新的相对核功率密度数据存放在“处理单元4”中(所存储的相对核功率密度代表了该多径信号在后处理中的重要程度,其值越大,表明该多径信号在后续信道探测仪的内部处理中所占的权重越大);8)将“处理单元2”中的计数器值归零,重复步骤5)-7),直至完成对“处理单元2”中所有多径信号相对核功率密度的计算,将所获得的相对核功率密度数据全部存放在“处理单元4”中;9)在“处理单元4”中搜索相对核功率密度为1的多径信号,将所有这些相对核功率密度为1的多径信号的编号以及其在“处理单元2”中所对应的空间坐标存储在“处理单元5”里,这些多径信号是后续处理中建立多径成簇关系的初始中心点,即“初始多径核心点单元”;10)在信道探测仪的“处理单元2”里,借助空间坐标及“处理单元4”数据搜索任意多径信号x附近,距离它最近、相对核功率密度又比它大的多径信号,将这个多径信号称之为x的高密度最近邻信号,二者存在“逻辑连通关系”,并将其编号存放在“处理单元6”的高密度最近邻矩阵中;11)重复步骤10),直至完成对“处理单元2”里所有数据的计算,将所有获得的高密度最近邻信号编号及“逻辑连通关系”编号存放在“处理单元6”的高密度最近邻矩阵中;12)通过数据检索的方法,对每一个存放在存储器里的多径数据进行排查判决,建立存储器中所有存放的多径信号之间的初始成簇关系,这样,完成了对“处理单元2”中所有多径信号归属关系的初始分簇,将每一个多径信号的分簇编号存放在“处理单元7”中;13)继续通过数据检索的方法,对“处理单元7”中的每个多径信号的分簇编号进行更新;14)找出“处理单元7”中所有出现的编号值,统计它们的总个数,并重新将它们按顺序序列编排,删除不连续的序号,将所得结果存入“处理单元8”中;15)将信道探测仪“处理单元8”中的结果存入第三存储介质,多径信号的分簇过程结束。2.如权利要求1所述的方法,其特征在于,通过数字下变频和模数转换操作,获得连续时刻下信道冲激响应数据;所述第一存储介质是磁盘阵列A区;所述第二存储介质是磁盘阵列B区;所述第三存储介质是磁盘阵列C区;所述第一存储介质、所述第二存储介质、所述第三存储介质在同一磁盘上;若信道探测器配置有多天线射频单元,则所存储的多径样本包含多径的幅度、时延、角度3方面信息;若信道探测仪配置仅为单天线射频单元,则所存储的多径样本包含多径的幅度、时延2方面信息;在信道探测仪内部的处理器中预先分配出8个处理单元;每个多径信号均独立地存放在各“处理单元1”里的不同的矩阵单元中;将每一个矩阵单元中的多径信号映射到功率-时延-角度的三维逻辑空间中,并在“处理单元2”中存储每个多径数据的空间坐标;若“处理单元2”中计数器值等于则停止对“处理单元2”中数据的搜索;设备处理器内部的判决依据如下:“处理单元2”中不同的多径信号如果依照“处理单元6”中的高密度最近邻逻辑连通关系找到一条通往“处理单元5”中同一个“初始多径核心点单元”的逻辑通路,那么,这些多径信号属于这个“初始多径核心点单元”的内部数据;设备处理器内部的更新依据如...

【专利技术属性】
技术研发人员:何睿斯艾渤李清勇王琦耿阳李敖陈瑞凤钟章队于剑
申请(专利权)人:北京交通大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1