一种气体流量传感器的结构及其制造方法技术

技术编号:14618914 阅读:238 留言:0更新日期:2017-02-10 10:25
本发明专利技术属于MEMS制造工艺技术领域,公开了一种气体流量传感器的结构及其制造方法,其包括具有第三离子掺杂浓度的加热器电阻,具有第二离子掺杂浓度的第一组上、下游半导体热电极,具有第一离子掺杂浓度的第二组上、下游半导体热电极,其中,第二离子掺杂浓度以及第三离子掺杂浓度大于第一离子掺杂浓度。本发明专利技术提供了一种气体流量传感器的结构及其制造方法,在传统器件结构上增加一组上、下游热电偶,在气流的上下游分别形成两组不同离子掺杂浓度的上、下游半导体热电极,通过电压差计算,基本抵消半导体材料塞贝克系数随温度变化的影响,使参考数据随温度差呈线性变化,有利于提高气体温度以及流量的检测灵敏度以及准确性。

【技术实现步骤摘要】

本专利技术属于MEMS制造工艺
,涉及一种气体流量传感器的结构及其制造方法
技术介绍
气体流量传感器是流量计的一种,目前在各行各业已有广泛应用,应用领域涵盖汽车电子、能源计量、科学实验、节能环保等方面。经过多年的技术发展,气体流量传感器越来越趋向于小型化、功能化,其检测性能也不断提高。气体流量传感器按能量转换的方式可以分为压电式、热电偶、光电式等类型,其中基于热电偶测温原理的热式气体流量传感器是主流类型之一,热式气体流量传感器使用热电偶测温检测气体流量。为适应器件小型化趋势,出现了基于MEMS加工工艺的微型气体流量传感器,芯片基本结构包括一个加热电阻以及位于其两侧的一对测温部件。当气体流过传感器芯片时,温度场因为流体介质带走热量导致局部温度重新分布,局部温度场的变化量取决于流体介质的质量及流速,通过对此温度分布进行测量、校准,可测出实际的气体流量。为适于MEMS加工工艺,热电偶热电极材料常选用半导体材料,但与金属材料相比,半导体材料的塞贝克系数随温度变化明显,对测温结果有较大影响,现有应对措施为加测器件的环境温度,通过集成芯片计算进行补偿,但该措施会增加模块成本和集成的复杂性。专利号公开号为US8640552的美国专利提出了一种增加附加电路进行测量修正的方法,解决了上述问题,但解决问题的过程较为复杂,且成本较高。因此,本领域技术人员亟需提供一种气体流量传感器的结构及其制造方法,抵消半导体材料塞贝克系数随温度变化的影响,提高气体温度以及流量的检测灵敏度以及准确性。
技术实现思路
本专利技术所要解决的技术问题是提供一种气体流量传感器的结构及其制造方法,抵消半导体材料塞贝克系数随温度变化的影响,提高气体温度以及流量的检测灵敏度以及准确性。为了解决上述技术问题,本专利技术提供了一种制造气体流量传感器结构的制造方法,包括以下步骤:步骤S01,提供一半导体衬底,并在所述衬底上形成绝缘薄膜层;步骤S02,在所述绝缘薄膜层上形成半导体薄膜层;步骤S03,对所述半导体薄膜层进行全片离子注入,其离子注入具有第一离子掺杂浓度;步骤S04,对所述半导体薄膜层上的第一组上、下游半导体热电极区域以及加热器电阻区域进行分区域离子注入;其中,所述第一组上、下游半导体热电极区域具有第二离子掺杂浓度,所述加热器电阻区域具有第三离子掺杂浓度,所述第二离子掺杂浓度以及第三离子掺杂浓度大于所述第一离子掺杂浓度;步骤S05,对所述半导体薄膜层进行图形化,以形成第一组上、下游半导体热电极,加热器电阻以及第二组上、下游半导体热电极;步骤S06,在所述第一组上、下游半导体热电极以及第二组上、下游半导体热电极上形成金属薄膜层,并对所述金属薄膜层图形化,以形成金属热电极和电极的引脚;步骤S07,在所述半导体薄膜层上形成释放孔,并将第一组上、下游半导体热电极,加热器电阻以及第二组上、下游半导体热电极下方的半导体衬底进行刻蚀以获得空腔结构,然后在其表面沉积钝化层,以形成气体流量传感器的结构。优选的,步骤S01中,所述绝缘薄膜层为复合结构,从下往上依次包括底层二氧化硅层、氮化硅层以及上层二氧化硅层。优选的,步骤S01中,采用热氧化工艺形成所述底层二氧化硅层,采用等离子气相沉积工艺形成所述氮化硅层,采用等离子气相沉积工艺形成所述上层二氧化硅层。优选的,步骤S02中,所述半导体薄膜层的材料为多晶硅,采用等离子气相沉积工艺形成所述半导体薄膜层,所述半导体薄膜层的厚度为5000~优选的,步骤S03中,对所述半导体薄膜层进行全片离子注入的元素为磷或砷,注入剂量为2×1015atom/cm2,第一离子掺杂浓度为4×1019atom/cm3。优选的,步骤S04中,第二离子掺杂浓度为1×1020atom/cm3,第三离子掺杂浓度为4×1020atom/cm3。优选的,步骤S05中,第一组上、下游半导体热电极以及第二组上、下游半导体热电极的线宽为9~11μm,加热器电阻的线宽为30~50μm。优选的,步骤S06中,所述金属薄膜层的厚度为2000~所述金属热电极的线宽为3~7μm。优选的,步骤S07中,所述钝化层的材料为二氧化硅层以及氮化硅层的复合结构,二氧化硅层的厚度为0.8~1.2μm,氮化硅层的厚度为0.2~0.4μm。本专利技术还提供一种气体流量传感器的结构,所述气体流量传感器的结构包括:加热器电阻,其具有第三离子掺杂浓度;第一组上、下游半导体热电极,包括第一上游半导体热电极以及第一下游半导体热电极,所述第一上游半导体热电极以及第一下游半导体热电极分别位于所述加热器电阻的两侧,所述第一组上、下游半导体热电极具有第二离子掺杂浓度,所述第二离子掺杂浓度大于所述第一离子掺杂浓度;第二组上、下游半导体热电极,包括第二上游半导体热电极以及第二下游半导体热电极,所述第二上游半导体热电极以及第二下游半导体热电极分别位于所述加热器电阻的两侧,所述第二组上、下游半导体热电极具有第一离子掺杂浓度。本专利技术提供了一种气体流量传感器的结构及其制造方法,在传统器件结构上增加一组上、下游测温部件,在气流的上下游分别形成两组不同离子掺杂浓度的上、下游半导体热电极,通过电压差计算,基本抵消半导体材料塞贝克(seebeck)系数随温度变化的影响,使参考数据随温度差呈线性变化,有利于提高气体温度以及流量的检测灵敏度以及准确性。附图说明为了更清楚地说明本专利技术实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本专利技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1为本专利技术提出的气体流量传感器结构的制造方法的流程示意图;图2a-图2c为本专利技术提出的工艺步骤S04~S06的平面结构示意图。具体实施方式为使本专利技术的目的、技术方案和优点更加清楚,下面将结合附图对本专利技术的实施方式作进一步地详细描述。本领域技术人员可由本说明书所揭露的内容轻易地了解本专利技术的其他优点与功效。本专利技术还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本专利技术的精神下进行各种修饰或改变。上述及其它技术特征和有益效果,将结合实施例及附图对本专利技术提出的气体流量传感器的结构及其制造方法进行详细说明。图1为本专利技术提出的气体流量传感器结构本文档来自技高网
...

【技术保护点】
一种制造气体流量传感器结构的制造方法,其特征在于,包括以下步骤:步骤S01,提供一半导体衬底,并在所述衬底上形成绝缘薄膜层;步骤S02,在所述绝缘薄膜层上形成半导体薄膜层;步骤S03,对所述半导体薄膜层进行全片离子注入,其离子注入具有第一离子掺杂浓度;步骤S04,对所述半导体薄膜层上的第一组上、下游半导体热电极区域以及加热器电阻区域进行分区域离子注入;其中,所述第一组上、下游半导体热电极区域具有第二离子掺杂浓度,所述加热器电阻区域具有第三离子掺杂浓度,所述第二离子掺杂浓度以及第三离子掺杂浓度大于所述第一离子掺杂浓度;步骤S05,对所述半导体薄膜层进行图形化,以形成第一组上、下游半导体热电极,加热器电阻以及第二组上、下游半导体热电极;步骤S06,在所述第一组上、下游半导体热电极以及第二组上、下游半导体热电极上形成金属薄膜层,并对所述金属薄膜层图形化,以形成金属热电极和电极的引脚;步骤S07,在所述半导体薄膜层上形成释放孔,并将第一组上、下游半导体热电极,加热器电阻以及第二组上、下游半导体热电极下方的半导体衬底进行刻蚀以获得空腔结构,然后在其表面沉积钝化层,以形成气体流量传感器的结构。

【技术特征摘要】
1.一种制造气体流量传感器结构的制造方法,其特征在于,包括以下步
骤:
步骤S01,提供一半导体衬底,并在所述衬底上形成绝缘薄膜层;
步骤S02,在所述绝缘薄膜层上形成半导体薄膜层;
步骤S03,对所述半导体薄膜层进行全片离子注入,其离子注入具有第
一离子掺杂浓度;
步骤S04,对所述半导体薄膜层上的第一组上、下游半导体热电极区域以
及加热器电阻区域进行分区域离子注入;其中,所述第一组上、下游半导体
热电极区域具有第二离子掺杂浓度,所述加热器电阻区域具有第三离子掺杂
浓度,所述第二离子掺杂浓度以及第三离子掺杂浓度大于所述第一离子掺杂
浓度;
步骤S05,对所述半导体薄膜层进行图形化,以形成第一组上、下游半导
体热电极,加热器电阻以及第二组上、下游半导体热电极;
步骤S06,在所述第一组上、下游半导体热电极以及第二组上、下游半导
体热电极上形成金属薄膜层,并对所述金属薄膜层图形化,以形成金属热电
极和电极的引脚;
步骤S07,在所述半导体薄膜层上形成释放孔,并将第一组上、下游半导
体热电极,加热器电阻以及第二组上、下游半导体热电极下方的半导体衬底
进行刻蚀以获得空腔结构,然后在其表面沉积钝化层,以形成气体流量传感
器的结构。
2.根据权利要求1所述的气体流量传感器结构的制造方法,其特征在于,
步骤S01中,所述绝缘薄膜层为复合结构,从下往上依次包括底层二氧化硅
层、氮化硅层以及上层二氧化硅层。
3.根据权利要求2所述的气体流量传感器结构的制造方法,其特征在于,
步骤S01中,采用热氧化工艺形成所述底层二氧化硅层,采用等离子气相沉
积工艺形成所述氮化硅层,采用等离子气相沉积工艺形成所述上层二氧化硅
层。
4.根据权利要求1所述的气体流量传感器结构的制造方法,其特征在于,

\t步骤S02中,所述半导体薄膜层的材料为多晶硅,采用等离子气相沉积工艺
形成所...

【专利技术属性】
技术研发人员:王伟军康晓旭
申请(专利权)人:上海集成电路研发中心有限公司
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1