一种可用于GMI传感器的非晶合金纤维复合材料及制备方法技术

技术编号:14365992 阅读:50 留言:0更新日期:2017-01-09 12:33
本发明专利技术涉及一种可用于GMI传感器的非晶合金纤维复合材料及制备方法,属于智能材料领域。该复合材料是由多根非晶合金微丝通过高硼硅玻璃包覆形成一根集束微丝。其制备方法是:1.利用玻璃包覆纺丝法制备具有玻璃包覆结构的磁性非晶合金微丝;2.将玻璃包覆非晶合金微丝穿入毛细玻璃管中两端固定,通过加热使玻璃管连同其内部的非晶合金微丝软化;3.以均匀的速率拉伸并淬火,得到具有多根非晶合金纤维‑玻璃复合结构的非晶合金纤维复合材料。本发明专利技术工艺简单,可制备出直径50~800μm的非晶合金纤维复合材料。该复合材料将多根具有GMI效应的非晶合金纤维集成于一体,在GMI传感器中具有广阔的应用潜力。

【技术实现步骤摘要】

本专利技术涉及一种可用于GMI传感器的复合材料,属于智能材料领域。
技术介绍
磁测量传感器是电子测量领域及发展高水平控制系统的关键器件之一,在现代控制技术中扮演着重要角色。随着信息技术的发展,人们对磁传感器的大小、灵敏度、热稳定性及功耗等提出了更高的要求。巨磁阻抗(GiantMagneto-impedance,简称GMI)效应最早在Co基软磁非晶合金丝中发现。当通入高频交变电流时,非晶合金微丝的阻抗值会随着外加磁场的改变发生巨大变化,且具有很高的灵敏度,该效应一经发现便引起了各国研究者的广泛关注。GMI效应应用于传感器可同时具有高灵敏度、微型尺寸、稳定性好和快速响应等优点。同时因其使用的是交流信号,便于实现如调制解调、滤波、振荡和共振等许多性能。GMI材料在宇航工程、军事探测、地质勘探、医疗诊断、交通控制和机械工业(汽车、机器人、材料探伤等)等磁场测量方面具有广阔的应用前景。提高材料的GMI效应能够拓宽其应用领域,是GMI材料研究中的重要问题,然而目前实验中所得到的GMI变化率仍远低于理论预测值。材料的GMI效应会受到多种因素的影响,其中成分调节、退火处理与应力诱导是目前提高材料的GMI效应的三种主要方法,前两种方法均需要大量试验验证与工艺摸索才能够获得理想的结果,要获得成熟的工艺,前期往往需要投入科研资源针对材料本身性能进行研究。而通过施加应力诱导磁畴改变的方式提高材料磁导率,其结果又往往具有不确定性,难以作为一种制备工艺在GMI材料上加以应用。
技术实现思路
针对上述问题,本专利技术从材料结构上加以考虑,提出一种非晶合金纤维复合材料,同时给出了一种该材料的制备方法。本专利技术提出的非晶合金纤维复合材料,其内部结构为:芯部应包含至少两根钴基非晶合金纤维,外层由高硼硅玻璃包覆层构成,多根非晶合金纤维之间通过包覆层相互连结,形成一根非晶合金纤维复合微丝。其内部纤维的合金分子式为CoaFebSicBd,其中a+b+c+d=100,a=64~70,b=3~6,c=10~15,d=12~16。下标a、b、c、d分别表示各合金元素对应的原子摩尔百分比。本专利技术针对上述非晶合金纤维复合材料提出一种适宜的制备方法,按照以下步骤进行:1)选取纯度大于99%的金属原料,根据非晶合金纤维所需的成分,按照原子摩尔百分比配料,在氩气保护下反复熔炼3~6次形成成分均匀的母合金锭。2)将母合金锭破碎为质量1~2g大小合适的块料,放入高硼硅玻璃管中,固定玻璃管使其底部位于感应线圈中央位置。3)通过机械泵从玻璃管开口处抽真空至5.0Pa以下,再向玻璃管内充入氩气至0.1MPa。启动高频感应电源,在200~800A范围内,逐渐提高感应线圈内电流,熔化玻璃管内合金块料,使熔融合金液浸润玻璃管底部,当玻璃管底部软化时,用带尖端的玻璃棒从玻璃管底部伸入合金液微熔池中,向下牵引出微丝并喷水冷却,得到玻璃包覆的合金微丝。4)将步骤3中制得的非晶合金微丝放入丙酮或无水乙醇中超声波清洗1~2min,将多根合金微丝相互并列后穿入毛细玻璃管中。5)将毛细玻璃管两端固定,加热毛细玻璃管,使毛细玻璃管连同其内部的非晶合金微丝软化。6)沿玻璃管平行方向向两端均匀拉伸至所需直径,然后通过淬火或空冷的方式使材料冷却。步骤4中穿入毛细玻璃管中的非晶合金微丝应具有完整的玻璃包覆层。步骤4中穿入毛细玻璃管中的非晶合金微丝数目应大于2,非晶合金微丝直径范围应小于毛细玻璃管内径的1/2。步骤4中所采用的毛细玻璃管,尺寸范围为直径1~2mm、壁厚0.1~0.5mm。步骤5中的加热温度范围为400~500℃。与现有技术相比,本专利技术具有以下优点:(1)本专利技术所述的非晶合金纤维复合材料,结构上充分利用了工艺中形成的玻璃包覆层将非晶合金纤维之间相互隔开,玻璃包覆层不仅与非晶合金纤维之间具有良好的结合力,在外加阻抗的过程中能起到很好的绝缘作用。同时起到结合作用的外加玻璃层材质与包覆层相同,减轻了传统方法(胶黏、焊接)由于结合处材质不同对材料内部纤维GMI效应的干扰。(2)采用本专利技术所述的制备方法可将多根微米级非晶合金纤维通过玻璃包覆的方式集成于一体,通过调节制备工艺参数,可在单根非晶合金复合材料内部集成大量纤维,且结构具有可控性。(3)整个工艺流程具有成本低、工序短、操作简单易行的特点。附图说明图1为本专利技术制备非晶合金纤维复合材料的示意图,(A)为制备前毛细玻璃管内部装配的结构示意图,1为非晶合金微丝,2为包覆于非晶合金微丝外的玻璃层,3为毛细玻璃管;(B)为通过加热拉伸装配后的毛细玻璃管制备非晶合金纤维复合材料过程示意图。图2为本专利技术实施例1中制作非晶合金纤维复合材料所采用的直径130μm玻璃包覆合金微丝的XRD图谱,具有明显的非晶态结构特征。图3为本专利技术实施例1中体视显微镜下非晶合金纤维复合材料的宏观形貌,从端部多根非晶合金纤维逐步汇聚于一体。图4为本专利技术实施例1中非晶合金纤维复合材料横截面的SEM图,其中4为非晶合金微丝截面,5为包覆于非晶合金丝外的玻璃层截面,6为最外层毛细玻璃管截面。具体实施方式实施例1将纯度大于99%的原料Co、Fe、Si、B按照Co68.2Fe4.3Si12.5B15的成分配制,在氩气保护下在高频感应熔炼炉中反复熔炼3~6次,形成质量30g、成分均匀的母合金锭。将母合金锭破碎为1g的块料,放入外径10mm,壁厚1mm高硼硅玻璃管中,固定玻璃管后打开机械泵抽真空至管内压强5.0Pa以下,再向玻璃管内充入氩气至0.1MPa。打开高频电源,调节线圈电流从200A逐步提高至500A,此时玻璃管内块料熔化,熔融合金液浸润玻璃管底部,当玻璃管底部软化时,用尖头玻璃棒从玻璃管底部伸入合金液微熔池中,向下牵引出微丝并喷水冷却,得到玻璃包覆的非晶合金微丝,非晶合金微丝的XRD图像如图2所示。选取粗细均匀、长度稳定、直径130μm的玻璃包覆非晶合金微丝,按照15cm截取6段,并行穿入外径1.1mm、内径0.9mm、长15cm的毛细玻璃管中,将毛细玻璃管两端固定,用酒精灯外焰加热毛细玻璃管中部,观察到毛细玻璃管发红后,向两端25mm/min的速度拉伸至直径0.5mm后在水中淬火冷却。最后去除两端未受热变形区域,得到直径500μm的非晶合金纤维复合材料。复合材料的体视显微镜图片、横截面的SEM图像分别如图3、图4所示。实施例2包覆丝直径选取200μm,按照15cm截取4段置入毛细玻璃管中,其他技术方案如实施例1,可得到内部具有4根非晶合金纤维的复合材料。本文档来自技高网...
一种<a href="http://www.xjishu.com/zhuanli/63/201610624338.html" title="一种可用于GMI传感器的非晶合金纤维复合材料及制备方法原文来自X技术">可用于GMI传感器的非晶合金纤维复合材料及制备方法</a>

【技术保护点】
一种可用于GMI传感器的非晶合金纤维复合材料,其特征在于,其内部结构应包含至少两根Co基非晶合金纤维,非晶合金纤维之间通过高硼硅玻璃包覆层相互连结形成一根粗细均匀的复合微丝;所述Co基非晶合金的分子式为CoaFebSicBd,其中a+b+c+d=100,a=64~70,b=3~6,c=10~15,d=12~16。

【技术特征摘要】
1.一种可用于GMI传感器的非晶合金纤维复合材料,其特征在于,其内部结构应包含至少两根Co基非晶合金纤维,非晶合金纤维之间通过高硼硅玻璃包覆层相互连结形成一根粗细均匀的复合微丝;所述Co基非晶合金的分子式为CoaFebSicBd,其中a+b+c+d=100,a=64~70,b=3~6,c=10~15,d=12~16。2.如权利要求1所述的可用于GMI传感器的非晶合金纤维复合材料的制备方法,其特征在于包含以下步骤:1)根据权利要求1所述的合金成分,按照原子摩尔百分比配料,原料纯度应大于99.9%,氩气保护下在电弧熔炼炉中反复熔炼3~6次形成成分均匀的母合金锭;2)将母合金锭破碎为大小能够放入玻璃管中的块料,选取质量1~2g的块料放入玻璃管中,固定玻璃管使其底部位于感应线圈中央位置;3)通过机械泵从玻璃管开口处抽真空至5.0Pa以下,再向玻璃管内充入氩气至0.1MPa;启动高频感应电源,在200~800A范围内,逐渐提高感应线圈内电流,熔化玻璃管内合金块料,使熔融合金液浸润玻璃管底部,当玻璃管底部软化时,用带尖端的玻璃棒从玻璃管底部伸入合金液微熔池中,向下牵引...

【专利技术属性】
技术研发人员:张勇邢秋玮赵万里
申请(专利权)人:北京科技大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1