当前位置: 首页 > 专利查询>中山大学专利>正文

用于燃料电池阴极的氧还原催化剂及其有序电极的制备方法技术

技术编号:14182482 阅读:408 留言:0更新日期:2016-12-14 11:49
本发明专利技术公开了一种用于燃料电池阴极的氧还原催化剂及其有序电极的制备方法。采用二氧化硅微球作为硬模板,加入碳源,通过在惰性气氛或氨气气氛中高温处理后刻蚀模板得到三维互联的中空碳球;通过进一步引入铁源、氮源,得到高氧还原活性的铁‑氮‑炭复合材料。该方法制备的铁‑氮‑炭复合材料具有层次多孔、催化活性位分布均匀、比表面积高、酸碱体系中氧还原性能好等特点。本发明专利技术还包括在碳纸上均匀沉积二氧化硅模板后,以所述铁‑氮‑炭复合材料制备方法原位构筑一体化电极,该电极中的铁‑氮‑炭中空互联结构规则排列,具有良好的电子、质子、电解液和气体等多项物质传输通道,大大提高了催化活性位的利用率进而提升电极的氧还原性能,该电极较传统喷涂方法制备的电极具有更好的氧化还原反应电催化活性。

Oxygen reduction catalyst for fuel cell cathode and preparation method thereof

The invention discloses an oxygen reduction catalyst for a fuel cell cathode and a preparation method thereof. Using silica microspheres as hard template, adding carbon source, through the hollow carbon spheres in an inert atmosphere or ammonia atmosphere in the etching template three-dimensional interconnection after high temperature treatment; by further introducing iron source, nitrogen source, nitrogen iron carbon composite materials with high oxygen reduction activity. The preparation method of iron nitrogen carbon composites prepared with hierarchical porous catalytic activity, a uniform distribution, specific surface area, high acidity and good performance in oxygen reduction system. The invention also includes uniform deposition of silica template in carbon paper after the iron carbon composite nitrogen preparation method of in situ construction of integrated electrode, iron nitrogen carbon hollow interconnection structure rules of the electrode in the array, with good electron, proton, electrolyte and body and other material transmission channel, greatly improve the catalytic activity of the electrode and enhance the utilization rate of the oxygen reduction performance, oxidation of the electrode than the traditional spraying method for preparing electrode has better electrocatalytic activity for reduction reaction.

【技术实现步骤摘要】

本专利技术涉及一种氧还原催化剂,属于质子交换膜燃料电池领域,特别是涉及一种用于燃料电池阴极氧还原反应的非贵金属催化剂及其有序电极的制备。
技术介绍
阴极氧还原反应(Oxygen reduction reaction,ORR)是燃料电池的关键组成部分之一,但其动力学过程缓慢、过电位高、稳定性差,需要优异的ORR电催化剂以保证燃料电池的性能。因此,研发性能优异的ORR电催化剂是燃料电池研究领域的热点与重点。目前,ORR电催化剂主要以贵金属铂或铂钌做催化剂,但是,贵金属铂或铂钌催化剂存在价格昂贵、稳定性差、容易毒化等严重问题。在20世纪60年代,非贵金属ORR催化剂的活性被首次报道,随后许多非贵金属如:过渡金属及其氧化物、非金属原子掺杂炭基材料也得到了较为广泛的研究,并在一定程度上提高了非贵金属ORR电催化剂的活性及稳定性。开发高效廉价的非贵金属氧还原电催化剂,特别是过渡金属-氮-炭催化剂具有很大的现实意义和研究基础。在前人研究进展的基础上,进一步针对催化剂的结构、催化剂前躯体的选择,制备方法等进行优化,以获得酸碱体系中氧还原电催化性能良好、稳定性好的催化剂,对促进燃料电池在社会能源领域的应用显得尤为重要。另一方面,燃料电池的组装,特别是其核心部件-膜电极的组装对燃料电池的实际性能有举足轻重的影响。膜电极主要包括阳极扩散层、阳极催化层、聚合物电解质膜、阴极催化层、阴极扩散层,是燃料电池能量转换的多相物质传输和电化学反应场所,最终决定着电池的性能、寿命和成本。传统的膜电极主要是将催化剂、载体、粘结剂和质子导体(Nafion)混合分散于分散介质制备成催化剂浆液,通过涂覆、喷涂和流延等方法,将催化剂浆液制备在气体扩散层或质子交换膜上。然而,这种制备方法得到的电极中,催化剂活性位会出现严重的团聚或“包埋”现象,导致催化剂利用率低,同时,质子、电子、气体和电解液等物质的多相传输通道均处于无序状态,存在着较强的电化学极化和浓差极化,制约膜电极的大电流放电性能。因此,燃料电池要达到商业化可以接受的程度不仅要开发高效廉价的催化剂,也要开发具有纳米有序化结构催化层的膜电极,扩大三相反应界面,增加催化剂的利用率。例如,Tian等在铝箔基板上制备出垂直碳纳米管(VACNTs),采用物理溅射的方法将Pt纳米颗粒催化剂加至VACNTs薄膜上,最后采用热压的方式将有序化电极从铝箔转移到Nafion膜上,并装配成电池。这种Pt/VACNTs做成的膜电极具有低Pt载量(Pt担载量35μg/cm2,商业化的膜电极为400μg/cm2)、高性能(1.03W/cm2)的特点[Advance Energy Materials,2011,1,1205–1214]。Sun等直接在气体扩散层上聚合出垂直有序的嵌有Nafion的吡咯纳米线阵列,利用Nafion和Pt颗粒之间的作用力将Pt均匀锚定在纳米线上,不仅获得良好的气液传输性能,扩大反应面积,其催化活性位附近质子和电子传导也非常快速,组装成电池后其比功率密度达11.97W mg-1Pt电极,比商业化的电池高3倍[Scientific Reports,2015,5,16100]。这些关于有序化电极的研究,提高了Pt催化剂的利用率,减小了质子、电子、反应物的传输阻力,在一定程度上推动燃料电池的实用化进展。然而,这些研究均基于贵金属Pt催化剂,而使用非贵金属为催化剂的有序化电极尚未见文献报告。
技术实现思路
针对燃料电池中贵金属催化剂成本高、寿命短等缺点,本专利技术提出了一种用于燃料电池阴极氧还原反应的氧还原催化剂,其氧还原性无论是在酸性还是碱性体系中均具备与Pt催化剂相当的性能。同时,针对传统膜电极制备方法催化剂利用率低、质子和电子及反应物传输阻力大等缺点,本专利技术提供了一种基于上述非贵金属催化剂的新型有序化电极的制备方法。为实现上述目的,本专利技术采用以下具体技术方案来实现:1)采用合适的二氧化硅模板和碳源,通过碳源分子间缩聚获得碳源均匀包覆的二氧化硅球;2)通过在惰性气氛或氨气气氛中高温处理步骤1)所得材料,并刻蚀模板获得三维互联的层次多孔中空碳球;3)采用合适的铁源,与步骤2)所得中空碳球均匀混合后,在惰性气氛中二次高温处理得铁-氮-炭复合材料;所述铁源可采用氯化铁、乙酸铁、铁卟啉、酞菁铁其中的一种或两种以上混合物。本专利技术的制备方法,步骤1)中,二氧化硅球的粒径为50-500nm;所述碳源可采用蔗糖、葡萄糖、酚醛、苯胺其中的一种或两种以上混合物;所述碳源的浓度为1wt.%~50wt.%水溶液,一般为5wt.%~30wt.%,较好为10wt.%~25wt.%。本专利技术的制备方法,步骤2)中,所述惰性气氛可采用N2、Ar、He其中的一种或两种以上混合物;所述高温处理的温度为600℃~1000℃,一般为700℃~950℃,较好为800℃~950℃;高温处理的时间为0.5~10小时,一般为1~8小时,较好为2~6小时。本专利技术的制备方法,步骤3)中,铁源可采用氯化铁、乙酸铁、铁卟啉、酞菁铁其中的一种或两种以上混合物;铁源与中空碳球的混合方式可选择超声、搅拌和研磨其中的一种或两种以上方式;铁源与中空碳球的混合的质量比为0.005~2,一般为0.005~1,较好为0.005~0.020。本专利技术的制备方法,步骤3)中,二次高温处理的温度为600℃~1100℃,一般为700℃~1000℃,较好为700℃~900℃;二次高温处理时间为0.5~10小时,一般为1~9小时,较好为3~6小时。由上述制备方法所制备的的层次多孔铁-氮-炭复合材料作为氧还原催化剂。另外,本专利技术还提出一种基于上述铁-氮-炭复合材料的有序电极的制备方法,包括以下步骤:a)采用合适的硅烷偶联剂,将二氧化硅微球和硅烷偶联剂分散于100ml甲苯中,通过110℃回流得表面官能团化的二氧化硅微球;b)采用甲醇和丙酮混合液为电泳液,将适量改性表面官能团化的二氧化硅微球分散于电泳液,对电极施加一定的直流稳压,通过电泳法使二氧化硅微球规则沉积于碳纸上;c)将上述层次多孔铁-氮-炭复合材料原位构筑于碳纸上,得到微观有序的电极。本专利技术的制备方法,步骤a)中,所述硅烷偶联剂选自氨丙基三乙氧基硅烷,甲基丙烯酰氧基丙基三甲氧基硅烷,乙烯基三乙氧基硅烷,巯丙基三甲(乙)氧基硅烷其中的一种;所述硅烷偶联剂与二氧化硅微球的质量比为0.3%~2.5%;回流时间为1~30小时,一般为5~24小时,较好为5~15小时。本专利技术基于铁-氮-炭复合材料的有序电极的制备方法,步骤b)中,所述甲醇和丙酮的混合液的体积比为0.01~100,一般为0.02~50,较好为0.05~20;官能团化的二氧化硅微球的浓度可为0.05g/l~2g/l。本专利技术基于铁-氮-炭复合材料的有序电极的制备方法,步骤b)中,对电极可选择铂片、不锈钢片、泡沫镍、碳纸、碳棒其中的一种;电泳的电压为5~100V,一般为5~60V,较好为5~40V;电泳的时长可为5~60分钟,一般为10~50分钟,较好为10~40分钟。本专利技术基于铁-氮-炭复合材料的有序电极,其在适用于酸性或碱性体系下的燃料电池阴极氧还原反应中的应用。本专利技术具有以下优点和有益技术效果:1)本专利技术制备了一种用于燃料电池的过渡金属-氮-炭复合材料氧还原电催化本文档来自技高网
...
<a href="http://www.xjishu.com/zhuanli/59/201610596058.html" title="用于燃料电池阴极的氧还原催化剂及其有序电极的制备方法原文来自X技术">用于燃料电池阴极的氧还原催化剂及其有序电极的制备方法</a>

【技术保护点】
一种用于燃料电池阴极的氧还原催化剂的制备方法,其特征在于该方法包括以下内容:1)采用合适的二氧化硅模板和碳源,通过碳源分子间缩聚获得碳源均匀包覆的二氧化硅球;2)通过在惰性气氛或氨气气氛中高温处理步骤1)所得材料,并刻蚀模板获得三维互联的层次多孔中空碳球;3)采用合适的铁源,与步骤2)所得中空碳球均匀混合后,在惰性气氛中二次高温处理得铁‑氮‑炭复合材料;所述铁源可采用氯化铁、乙酸铁、铁卟啉、酞菁铁其中的一种或两种以上混合物。

【技术特征摘要】
1.一种用于燃料电池阴极的氧还原催化剂的制备方法,其特征在于该方法包括以下内容:1)采用合适的二氧化硅模板和碳源,通过碳源分子间缩聚获得碳源均匀包覆的二氧化硅球;2)通过在惰性气氛或氨气气氛中高温处理步骤1)所得材料,并刻蚀模板获得三维互联的层次多孔中空碳球;3)采用合适的铁源,与步骤2)所得中空碳球均匀混合后,在惰性气氛中二次高温处理得铁-氮-炭复合材料;所述铁源可采用氯化铁、乙酸铁、铁卟啉、酞菁铁其中的一种或两种以上混合物。2.根据权利要求1所述的制备方法,其特征在于:步骤1)中,二氧化硅球的粒径为50-500nm;所述碳源可采用蔗糖、葡萄糖、酚醛、苯胺其中的一种或两种以上混合物;所述碳源的浓度为1wt.%~50wt.%水溶液。3.根据权利要求1所述的制备方法,其特征在于:步骤2)中,所述惰性气氛可采用N2、Ar、He其中的一种或两种以上混合物;所述高温处理的温度为600℃~1000℃;模板刻蚀可采用浓度为5wt.%~40wt.%的氢氟酸或浓度为0.5M~6M的NaOH或KOH。4.根据权利要求1所述的制备方法,其特征在于:步骤3)中,所述铁源与中空碳球的混合方式可选择超声、搅拌和研磨其中的一种或两种以上方式;所述铁源与中空碳球的混合的质量比为0.005~2.0;所述二次高温处理的温度为600℃~1100℃;二次高温处理时间为0.5~10小时。5.权利要求1~4中任一项所述的制备...

【专利技术属性】
技术研发人员:宋树芹吴明媚王毅
申请(专利权)人:中山大学
类型:发明
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1