【技术实现步骤摘要】
本专利技术属于计算机视觉
,特别涉及一种基于局部边缘特征整合的目标物体轮廓提取方法。
技术介绍
目标物体轮廓提取是图像目标识别和场景分析的关键步骤。人类视觉系统可以根据视觉场景的变化,通过自适应地调节神经元间的相互作用进行复杂的视觉加工和处理,使得目标物体轮廓检测问题变得简单有效。模拟哺乳动物视觉加工机制,建立受人类视觉系统神经信息加工机制启发的计算模型,解决计算机对数字图像中目标物体轮廓的检测问题是现代智能信息处理的一个有效途径,也受到越来越多的关注。目前,受视觉信息加工机制启发的轮廓提取方法主要是基于特征捆绑(feature binding)或特征整合(feature integration)机制,非经典感受野抑制特性是实现特征整合的一种有效方式。这种方法是基于初级视皮层神经元非经典感受野对经典感受野刺激响应的非线性作用,通过抑制图像中的背景纹理,达到检测目标物体轮廓的目的,其中包括各向同性抑制,各向异性抑制和多尺度自适应抑制方法。这些方法取得了比传统方法更好的轮廓检测效果,但是对场景背景干扰的鲁棒性不强,无法适用于复杂自然场景中的目标轮廓检测和提取。 ...
【技术保护点】
一种基于局部边缘特征整合的目标物体轮廓提取方法,其特征在于,通过对图像边缘特征的大范围整合,提取自然场景中目标物体的完整轮廓,具体过程如下:首先,采用一组不同朝向的Gabor滤波器组对输入的原始图像进行滤波处理,得到朝向信息图及其对应的能量分布图像;接着,依次以原始图像中的每个像素点作为待处理的中心像素点,通过以下处理过程,获得周围像素点对中心像素点的特征整合参数:1)依据待处理的中心像素点坐标将原始图像划分为中心区域和外周区域;对外周区域进行像素点采样获得外周像素采样点,以外周像素采样点为基础,将外周区域划分为若干大小相同、朝向各异的外周椭圆子区域;2)在朝向信息图及其对 ...
【技术特征摘要】
1.一种基于局部边缘特征整合的目标物体轮廓提取方法,其特征在于,通过对图像边缘特征的大范围整合,提取自然场景中目标物体的完整轮廓,具体过程如下:首先,采用一组不同朝向的Gabor滤波器组对输入的原始图像进行滤波处理,得到朝向信息图及其对应的能量分布图像;接着,依次以原始图像中的每个像素点作为待处理的中心像素点,通过以下处理过程,获得周围像素点对中心像素点的特征整合参数:1)依据待处理的中心像素点坐标将原始图像划分为中心区域和外周区域;对外周区域进行像素点采样获得外周像素采样点,以外周像素采样点为基础,将外周区域划分为若干大小相同、朝向各异的外周椭圆子区域;2)在朝向信息图及其对应的能量分布图像的基础上,分别计算中心区域和每个外周椭圆子区域内的局部边缘特征分布;3)根据每个外周像素采样点和对应的中心像素点的最优朝向的角度差、外周像素采样点空间位置以及外周椭圆子区域与中心区域的局部边缘特征分布差异,计算所有外周像素采样点对中心像素点的特征整合参数;最后,依据每个像素点的特征整合参数和对应的能量分布图像,得到整合信息图像;从能量分布图像中减去整合信息图像,得到整合后的轮廓信息图像,经过二值化操作后得到最终的轮廓图像。2.根据权利要求1所述的方法,其特征在于,所述能量分布图和朝向信息图是指与原始图像相对应的各像素点的能量值和最优朝向组成的矩阵,矩阵中的每个元素分别为原始图像经过不同朝向的Gabor滤波器组滤波后,每一个像素点在不同朝向Gabor滤波器下的最大响应强度值和对应朝向。3.根据权利要求1所述的方法,其特征在于,所述中心区域是指以中心像素点所在的位置作为中心,绘制长轴为15-31个像素,短轴为7-15个像素,长轴方向为中心像素点的最优朝向所得的椭圆区域;所述外周区域是指以中心像素点所在位置作为中心,绘制半径为50个像素所得的圆形区域,从所得的圆形区域中减去中心区域所得的区域;所述外周椭圆子区域是指在以1-4个像素为间隔,等间隔的采样外周区域内的像素点,并以每个采样点为中心,分别绘制长轴为15-31个像素,短轴为7-15个像素,长轴方向为相应采样点的最优朝向所得的椭圆区域。4...
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。