一种替代QT500汽车桥壳的铝合金材料及其低压铸造成型方法技术

技术编号:13710040 阅读:75 留言:0更新日期:2016-09-16 09:27
本发明专利技术公开一种替代QT500汽车桥壳的铝合金材料,其特征在于:主成分含量按重量百分比计:铈Ce:0.01‑0.05%,锰Mn:≤2%,镉Cd:0.05%~0.5%,铜Cu:4.2%~8.0%且Cu≥0.8Mn+4.05%;路易斯酸碱对总量1%×10‑4~2.0%,合金平均晶粒度<120微米,余量为铝Al。

【技术实现步骤摘要】

本专利技术涉及一种替代QT500汽车桥壳的铝合金材料及其制备方法。
技术介绍
球墨铸铁(简称球铁)是钢铁产业中的主要基础材料之一,被广泛而大量地用于制造受力复杂,强度、韧性、耐磨性等要求较高的零件,如通用机械、起重、农业、汽车、铸造、纺织、机床、电力、石化、船舶零件等,主要形态和类型为液压壳体、泵体、管道、阀体、缸体、轮毂、轴件、球连接、传动件、悬挂件、钩扣件、导流件、转向件等;在汽车工业中,钢铁材料的用量占汽车用材总量的60~70%,其中的三分之二以上又是球铁类铁合金。球墨铸铁产品生产制造需要在很高的温度下进行、与之相对应的能耗也高,污染大,随着汽车轻量化和节能环保的要求,相关球墨铸铁产品迫切需要寻早新的替代品。追求低碳、集约化、高效率(高效能)、灵活性和个性化,是制造业从传统形态向高端形态跨越的标志,以铝代钢、以轻强结构普遍替代钢铁重强结构,是实现这种跨越的主要手段。由于材料特征是由承载着该特征的功能性微观物相组合贡献出来的,因此获得良好的功能性物相组合,例如高强度、高熔点、高塑性、高硬度、耐腐蚀等,是各种制备方法追求的最终结果,从而,铝合金的化学成分设计与其制备技术存在着紧密的内在统一性,这种统一性,简言之,是一种原子如何结合成所需的“物相分子”的关系,即材料的物相可以看成是一种分子结构。配方元素的混合熔炼和铸造结晶,是熔铸法形成材料物相分子组合结构的主要决定性环节,在熔铸过程中,固溶体晶粒和晶界的金属间化合物分子物相决定了合金的晶态组合(亚微米级颗粒:尺度10~300μm左右),后续热处理或者冷作硬化则是对晶态组合框架下微细结构(微米级颗粒:尺度1~30μm左右)乃至更加微观的精微结构(亚纳米级或次微米级质点:尺度10nm~<1μm)进行调整和完善,这种调整和完善的程度和范围,在公知技术和传统观念中,认为主要由合金化学成分所处的合金相图区域给定的物相组合决定,但是,合金相图没有给出其它微量元素的添加和排除产生的影响,更不具备预测添加和排除其它微量元素对物相影响的指导性。借鉴合金溶液化学的理论和方法改善熔体结构,比如保护膜的覆盖,造渣剂、精炼剂或变质剂的添加,除气除渣净化等,是改善合金晶态组合、微细结构乃至更加微观的精微结构的重要技术手段,但这些手段,由于是从制备合金的过程中摸索积累得来,因此常常被看作为“制备工艺”而不是“成分设计”的一部分。在工程应用上,铝合金固溶体晶粒的大小和状态,以及分布在晶界的金属间化合物的大小形态,对合金的力学性能有着决定性的影响。粗大的平面晶、树枝晶、柱状晶等不规则晶体和分布在晶界的粗大的脆硬性金属间化合物,能够把合金好的微细结构和精微结构对基体的强韧性贡献全部抵消掉,因为这些粗大晶粒遵从的成长规律是缘于铸造型腔的型壁生核、自外向液体内部单向延伸的生长方式,造成了合金的成分偏析、结晶粗大单向、宏观性能不均匀的缺陷,从而成为合金的一些常见缺陷,如针孔、气孔、缩孔、缩松、偏析、粗大固溶体、高硬度化合物、裂纹等的根源。目前采用的常规变质手段和细化晶粒的手段,如添加铝钛硼或铝钛碳中间合金,最好的效果只能使平均晶粒度细化到120~150微米,而枝晶的形态往往没有根本的转变,这是合金力学性能提高的一个重要瓶颈问题。因为对铝合金来说,获得强度和韧性同时提高的途径,只有晶粒的细化和圆整化;热处理工艺的调整,在晶态结构已经确定的状态下,只能使强度或韧性一个方面获得优化。因此,如何进一步细化和圆整合金的平均晶粒度,是产业界始终追求的目标。通过中国国家标准《耐热高强韧铸件用铝合金锭》(GB/T 29434—2012)及其对应的专利ZL2009103061769介绍,211Z耐热高强韧铸造铝合金因具有“四高三好”特征(即高强、高韧、高硬、耐高温,同时铸造性能好、加工性能好、循环性能好)而进入了铝材料国际领先水平。但是,从材料设计角度看,211Z材料也存在一些难以克服的问题。微观分析发现,有一些大颗粒有很高的钛Ti和稀土浓度,作为用来促使晶粒细化的物质,这种现象表明Ti和稀土走向了需要解决问题的对立面;而在211Z合金铸件的生产过程中,也发生着与普通铝合金一样常见的缺陷,包括针孔、气孔、缩孔、缩松、偏析、粗大固溶体、高硬度化合物、夹杂(渣)、冷隔、冷豆、裂纹、变质缺陷、固溶不足和过烧等。通过对铝铜锰系(Al-Cu-Mn)合金最高达0.08nm的极高分辨率的球差校正扫描透射电子显微镜(STEM)精微选区分析,获得了建立在原子尺度上的各种物相结构、原子分辨和化学元素分布。证实其中存在一系列强化相,包括众所周知的Al-Cu二元亚稳相(GP区、θ"、θ')、新的盘片相和平衡相θ(Al2Cu);其中在基体晶粒内部,新发现一种棒叉状(T+θH)组合相,该组合相的主干部分T相是Al-Cu-Mn三元相,分子结构式Al20Cu2Mn3,分子物相特征是直径约100nm、长度约600~1000nm呈棒轴状且其(010)面与铝合金基体的{010本文档来自技高网...

【技术保护点】
一种替代QT500汽车桥壳的铝合金材料,其特征在于:主成分含量按重量百分比计:铈Ce:0.01‑0.05%, 锰Mn:≤2%,镉Cd:0.05%~0.5%,铜Cu:4.2%~8.0%且Cu≥0.8Mn+4.05%;路易斯酸碱对总量1%×10‑4~2.0%,合金平均晶粒度<120微米,余量为铝Al。

【技术特征摘要】
1.一种替代QT500汽车桥壳的铝合金材料,其特征在于:主成分含量按重量百分比计:铈Ce:0.01-0.05%, 锰Mn:≤2%,镉Cd:0.05%~0.5%,铜Cu:4.2%~8.0%且Cu≥0.8Mn+4.05%;路易斯酸碱对总量1%×10-4~2.0%,合金平均晶粒度<120微米,余量为铝Al。2.根据权利要求1所述的一种替代QT500汽车桥壳的铝合金材料,其特征在于:合金晶粒为等轴晶。3.根据权利要求1所述的一种替代QT500汽车桥壳的铝合金材料,其特征在于:合金晶粒内亚纳米(T+θH)组合相数量达到≥3个/平方微米。4.根据权利要求1所述的一种替代QT500汽车桥壳的铝合金材料,其特征在于:所述路易斯酸碱对为金属与配体结合而成的正离子体、金属氮化物、主族类元素中的一种,或者一种以上混合。5.根据权利要求4所述的一种替代QT500汽车桥壳的铝合金材料,其特征在于:所述的金属与配体结合而成的正离子体包含:异硫氰合铁正离子体[Fe(NCS)]2+。6.根据权利要求4所述的一种替代QT500汽车桥壳的铝合金材料,其特征在于:所述的主族元素包含:锂Li、铍Be和钙Ca。7.根据权利要求1-6之一所述的一种替代QT500汽车桥壳的铝合金材料,其特征在于:所述路易斯酸碱对,按元素添加量占Al基体重量百分比,范围为:Li<0.15%,Be<0.01%,Ca<0.01%,[Fe(NCS)]2+<0.01,AlCrN<0.01%。8.如权利要求7所述的一种替代Q...

【专利技术属性】
技术研发人员:李祥胥光酉毛春荣余晟倪彬
申请(专利权)人:贵州华科铝材料工程技术研究有限公司
类型:发明
国别省市:贵州;52

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1