基于Mecanum轮的全方向移动数字平板射线检测机器人制造技术

技术编号:12818113 阅读:54 留言:0更新日期:2016-02-07 10:31
本发明专利技术提供一种基于Mecanum轮的全方向移动数字平板射线检测机器人,包括射线源端机器人、数字平板探测器端机器人,射线源端机器人与数字平板探测器端机器人均采用全方位Mecanum轮结构,射线源端机器人包括车架一、Mecanum轮一、伺服电机一、前循迹传感器一、后循迹传感器一、X射线源、永磁磁铁一和运动控制盒一,平板探测器端机器人包括车架二、Mecanum轮二、伺服电机二、前循迹传感器二、后循迹传感器二、数字平板、永磁磁铁二和运动控制盒二;该检测机器人可进行全方向移动,即除了能实现进退、横移、原地转弯外,还能实现围绕任意一点进行旋转运动,尤其在电站锅炉、球罐、立式储罐等大型在役承压特种设备中,可以大大提高机器人对设备曲表面上焊缝检测的灵活性。

【技术实现步骤摘要】
基于Mecanum轮的全方向移动数字平板射线检测机器人
本专利技术涉及一种基于Mecanum轮的全方向移动数字平板射线检测机器人。
技术介绍
我国是承压特种设备制造大国,承压特种设备制造数量居世界第一。承压特种设备是工业的基础装备,石化、电力、航空航天等各个行业,以及国防、民生各个领域均需要各种承压特种设备。提高我国承压特种设备的国际竞争力,制造能力和产品质量,具有战略意义。无损检测是承压特种设备制造质量把关的关键手段,又是制约生产能力的瓶颈。目前国内承压特种设备制造中,焊缝无损检测的70%采用胶片射线照相法。该方法检测工期长,效率低,图像保管和复制困难,且消耗大量石油、银资源,还产生暗室废液污染环境,因此急需改进和提高。数字平板射线照相是近十年发展的无损检测新技术,具有检测速度快,效率高,灵敏度高,图像保存、复制和调用方便,节能环保等优点。但由于数字平板射线照相技术的数字平板探测器无法像胶片一样贴在容器内壁,所以该技术无法采用单壁透照方式在中等直径到大直径容器焊缝检测中应用,目前只能采用双壁透照方式检测直径1m以下的管道和气瓶的焊缝。近年来,特种设备数量不断高速增长。这就对保证特种设备高质量、高效率、高水平的检验检测提出了新的挑战。目前,国内外大型球罐、立式储罐等在役承压特种设备的自动化数字射线检测工艺装备存在空白,且现有的检测机器人对设备曲面上焊缝检测的灵活性相对不足,不能满足需求。如专利号为ZL200510018933.4公开的一种检测机器人,对于大型球罐、立式储罐由于无法定位在被检测对象体上,无法实现检测。如申请号为201410005169.6公开的一种储罐焊缝X射线检测机器人,只能够实现横向与纵向移动,不能任意方向移动或旋转,灵活性不足,且需要额外的部件来辅助以实现机器人的移动与定位。承压特种设备涉及公共安全,对质量要求高,需要先进的无损检测技术保驾护航,应提高承压特种设备制造能力和质量水平,同时提高我国无损检测技术水平。
技术实现思路
本专利技术的目的是提供一种基于Mecanum轮的全方向移动数字平板射线检测机器人解决现有技术中存在的大型球罐、立式储罐等在役承压设备的自动化数字射线检测工艺装备存在空白,且现有的检测机器人对设备曲面上焊缝检测的灵活性相对不足,不能满足需求等问题。本专利技术的技术解决方案是:一种基于Mecanum轮的全方向移动数字平板射线机器人,包括射线源端机器人、数字平板探测器端机器人,射线源端机器人与数字平板探测器端机器人均采用全方位Mecanum轮结构;射线源端机器人包括车架一、Mecanum轮一、伺服电机一、前循迹传感器一、后循迹传感器一、X射线源、永磁磁铁一和运动控制盒一,运动控制盒一连接有无线通讯模块一,前循迹传感器一设于车架一的前端,后循迹传感器一设于车架一的后端,车架一的中部设有运动控制盒一和连续式X射线源,车架一的两侧分别设有Mecanum轮一,Mecanum轮一连接有伺服电机一,伺服电机一连接运动控制盒一,车架一的底部两侧分别设有永磁磁铁一;数字平板探测器端机器人包括车架二、Mecanum轮二、伺服电机二、前循迹传感器二、后循迹传感器二、数字平板、永磁磁铁二和运动控制盒二,运动控制盒二连接有用于与无线通讯模块一连接通讯的无线通讯模块二,前循迹传感器二设于车架二的前端,后循迹传感器二设于车架二的后端,车架二的中部设有运动控制盒二和数字平板,数字平板设于车架二的底部,车架二的两侧分别设有Mecanum轮二,Mecanum轮二连接有伺服电机二,伺服电机二连接运动控制盒二,车架二的底部两侧分别设有永磁磁铁二。进一步地,X射线源采用连续式X射线源。进一步地,Mecanum轮一与Mecanum轮二的数量均为四个,Mecanum轮一分别设有车架一的四个端部,Mecanum轮二分别设于车架二的四个端部。进一步地,射线源端机器人、数字平板探测器端机器人分别设置在被检测对象的两侧,被检测对象如球罐等人孔处即出入口位置设有WiFi中继器。进一步地,永磁磁铁一与被检测对象间、永磁磁铁二与被检测对象间分别设有间隙,即永磁磁铁一的最底面高于Mecanum轮一的最底面,永磁磁铁二的最底面高于Mecanum轮二的最底面;永磁磁铁一与被检测对象的距离大于Mecanum轮一与被检测对象的距离,永磁磁铁二与被检测对象的距离大于Mecanum轮二与被检测对象的距离。进一步地,车架一与车架二中的至少一个设有悬架隔振装置,悬架隔振装置包括柔性单元、水平机构,柔性单元的一端设于磁铁固定座的顶部平台,柔性单元的另一端活动连接车架固定座,磁铁固定座的底部连接有永磁磁铁一或永磁磁铁二,车架固定座通过水平机构连接轴承座的凸台,轴承座与磁铁固定座分别通过螺栓连接伺服电机一或伺服电机二,磁铁固定座与伺服电机一或伺服电机二之间设有电机固定板,伺服电机一通过轮轴连接Mecanum轮一,或伺服电机二通过轮轴连接Mecanum轮二。进一步地,水平机构采用一个以上的H型连杆,一个以上的H型连杆平行安装且位于同一竖直面上构成平行四连杆机构,H型连杆的两端分别通过销轴连接车架固定座的凸台、轴承座的凸台。进一步地,柔性单元通过螺栓固定在磁铁固定座的顶部平台和压板间,柔性单元由若干片弹簧叠加构成,片弹簧包括设于中间的长片簧,片弹簧的长度由长片簧向两端递减,长片簧间隙配合在车架固定座的空槽内。进一步地,还包括同步跟踪控制模块:实现射线源端机器人与数字平板探测器端机器人同步跟踪行走,具体为:射线源端机器人自主行走,并记录编码器信息,得到每个轮子的转动圈数,然后将该信息通过无线发送给数字平板探测器端机器人;数字平板探测器端机器人根据射线源端机器人发送的编码器信息控制数字平板探测器端机器人各轮子的转动,并消除数字平板探测器端机器人运动产生的累积误差。进一步地,在同步跟踪控制模块中,消除平板探测器端机器人运动产生的累积误差,具体为:从每次数字平板曝光得到的图片,得到数字平板上的曝光区域,曝光区域即射线源的位置,即通过图片获得数字平板探测器端机器人相对于射线源端机器人的位置偏移距离,并在下一次行走的过程中对数字平板探测器端机器人的运动进行校正,来实现数字平板探测器端机器人与射线源端机器人的同步跟踪。进一步地,在同步跟踪控制模块中,消除数字平板探测器端机器人运动产生的累积误差,具体为:射线源端机器人装备电阻丝,射线源端机器人通过电阻丝或者红外射线对热源正对的罐体区域进行加热,当加热到一定程度时,被加热区域会形成正对热源点温度最高,向四周温度逐渐降低的特征;数字平板探测器端机器人则分布有四个对称的热敏传感器,四个热敏传感器正对点的温度差异会产生压电信号,如果没有对中的情况下,四个热敏传感器正对点温度不同,产生的压电信号会存在压差,根据压差控制数字平板探测器端机器人向着温度最高点运动,来实现数字平板探测器端机器人与射线源端机器人的同步跟踪。本专利技术的有益效果是:一、该种基于Mecanum轮的全方向移动数字平板射线检测机器人,采用全方位Mecanum轮结构,基于四个Mecanum轮的全方位移动机器人通过磁吸附在球罐表面,并携带数字平板射线检测系统对焊缝进行检测,能够实现在球罐等被检测对象表面的全方向移动,机器人可以灵活地检测各种走向的焊缝。二、该种基于M本文档来自技高网
...
基于Mecanum轮的全方向移动数字平板射线检测机器人

【技术保护点】
一种基于Mecanum轮的全方向移动数字平板射线机器人,其特征在于:包括射线源端机器人、数字平板探测器端机器人,射线源端机器人与数字平板探测器端机器人均采用全方位Mecanum轮结构;射线源端机器人包括车架一、Mecanum轮一、伺服电机一、前循迹传感器一、后循迹传感器一、X射线源、永磁磁铁一和运动控制盒一,运动控制盒一连接有无线通讯模块一,前循迹传感器一设于车架一的前端,后循迹传感器一设于车架一的后端,车架一的中部设有运动控制盒一和连续式X射线源,车架一的两侧分别设有Mecanum轮一,Mecanum轮一连接有伺服电机一,伺服电机一连接运动控制盒一,车架一的底部两侧分别设有永磁磁铁一;数字平板探测器端机器人包括车架二、Mecanum轮二、伺服电机二、前循迹传感器二、后循迹传感器二、数字平板、永磁磁铁二和运动控制盒二,运动控制盒二连接有用于与无线通讯模块一连接通讯的无线通讯模块二,前循迹传感器二设于车架二的前端,后循迹传感器二设于车架二的后端,车架二的中部设有运动控制盒二和数字平板,数字平板设于车架二的底部,车架二的两侧分别设有Mecanum轮二,Mecanum轮二连接有伺服电机二,伺服电机二连接运动控制盒二,车架二的底部两侧分别设有永磁磁铁二。...

【技术特征摘要】
1.一种基于Mecanum轮的全方向移动数字平板射线检测机器人,其特征在于:包括射线源端机器人、数字平板探测器端机器人,射线源端机器人与数字平板探测器端机器人均采用全方位Mecanum轮结构,射线源端机器人、数字平板探测器端机器人分别设置在被检测对象的两侧;射线源端机器人包括车架一、Mecanum轮一、伺服电机一、前循迹传感器一、后循迹传感器一、X射线源、永磁磁铁一和运动控制盒一,运动控制盒一连接有无线通讯模块一,前循迹传感器一设于车架一的前端,后循迹传感器一设于车架一的后端,X射线源采用连续式X射线源,车架一的中部设有运动控制盒一和连续式X射线源,车架一的两侧分别设有Mecanum轮一,Mecanum轮一连接有伺服电机一,伺服电机一连接运动控制盒一,车架一的底部两侧分别设有永磁磁铁一;数字平板探测器端机器人包括车架二、Mecanum轮二、伺服电机二、前循迹传感器二、后循迹传感器二、数字平板、永磁磁铁二和运动控制盒二,运动控制盒二连接有用于与无线通讯模块一连接通讯的无线通讯模块二,前循迹传感器二设于车架二的前端,后循迹传感器二设于车架二的后端,车架二的中部设有运动控制盒二和数字平板,数字平板设于车架二的底部,车架二的两侧分别设有Mecanum轮二,Mecanum轮二连接有伺服电机二,伺服电机二连接运动控制盒二,车架二的底部两侧分别设有永磁磁铁二;车架一与车架二中的至少一个设有悬架隔振装置,悬架隔振装置包括柔性单元、水平机构,柔性单元的一端设于磁铁固定座的顶部平台,柔性单元的另一端活动连接车架固定座,磁铁固定座的底部连接有永磁磁铁一或永磁磁铁二,车架固定座通过水平机构连接轴承座的凸台,轴承座与磁铁固定座分别通过螺栓连接伺服电机一或伺服电机二,磁铁固定座与伺服电机一或伺服电机二之间设有电机固定板,伺服电机一通过轮轴连接Mecanum轮一,或伺服电机二通过轮轴连接Mecanum轮二;柔性单元通过螺栓固定在磁铁固定座的顶部平台和压板间,柔性单元由若干片弹簧叠加构成,片弹簧包括设于中间的长片簧,片弹簧的长度由长片簧向两端递减,长片簧间隙配合在车架固定座的空槽内。2.如权利要求1所述的基于Mecanum轮的...

【专利技术属性】
技术研发人员:梁国安涂春磊郑凯王兴松
申请(专利权)人:江苏省特种设备安全监督检验研究院东南大学
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1