一种高效率的宽带螺旋线行波管制造技术

技术编号:12358941 阅读:202 留言:0更新日期:2015-11-20 16:06
本发明专利技术属于宽带螺旋线行波管技术领域,针对现有宽带螺旋线行波管输出功率低的缺点提供一种内径跳变的高效率宽带螺旋线行波管,包括输入螺旋线、输出螺旋线、夹持杆、管壳、集中衰减器,其中输入螺旋线、输出螺旋线通过夹持杆固定于管壳内,输入螺旋线和输出螺旋线之间用切断分隔,切断两边设置集中衰减器;其特征在于,所述输出螺旋线内径相较于输入螺旋线内径进行跳变,使得所述螺旋线行波管在工作频段内饱和输出功率点聚拢。本发明专利技术提出的宽带螺旋线行波管采用内径跳变技术有效的解决带宽内饱和输出功率的同步问题,有效提高宽带螺旋线行波管的输出功率,且在等激励输入条件下输出功率高。

【技术实现步骤摘要】
一种高效率的宽带螺旋线行波管
本专利技术属于宽带螺旋线行波管
,具体涉及一种内径跳变的高效率宽带螺旋线行波管。
技术介绍
随着社会的飞速发展,军事电子装备日新月异。军事电子装备的优劣,直接反应了部队作战能力的强弱,若是没有一系列宽带大功率电子器件,势必在电子对抗中处于极其不利的地位,因此电子对抗发射机对宽带大功率电子器件的要求越来越高,其中研制高频带、大功率、高效率的器件仍然是亟待解决的关键问题。宽带行波管是指频段范围覆盖广的行波管,宽带的拓展带来的不只是方便和快捷,还有巨大的经济效益:而宽带行波管功率的提高能满足不同用户不同场合的不同需求,具有广阔的市场应用前景。在卫星通信,数据传输等空间应用领域中,通常采用螺旋线行波管实现射频信号的放大。螺旋线行波管通过输入射频信号形成的电磁场与电子注进行相互作用,将电子注的动能转换为电磁能,从而实现射频信号的放大。相比采用其他高频结构的行波管,螺旋线行波管具有宽频带、大功率等特点,因而在空间应用领域得到广泛应用。螺旋线行波管可分为宽带螺旋线行波管和窄带螺旋线行波管,常规的螺旋线行波管高频结构主要包括输入螺旋线、输出螺旋线、夹持杆、管壳、集中衰减器构成。在宽带螺旋线行波管设计中,往往会在互作用优化时会碰到饱和输出功率的不同步现象,在高频段达到饱和输出功率并满足要求时,低频端没有达到饱和且达不到设计指标,或者在低频端达到饱和输出功率时,高频端已经衰减且达不到设计指标;所设计的行波管频带越宽,这种现象在设计的时候越容易出现,导致宽带螺旋线行波管频段变窄或者输出功率变低。如何解决上述问题已经成为国内外学者在设计宽带行波管的一个重要课题,目前国内外普遍采用非等激励输入来解决这个问题,也就是通过不同的输入功率来使得行波管满足在频带内达到输出指标,而该方法极大的增加了信号输入设备的体积和复杂程度。
技术实现思路
本专利技术的目的在于针对现有宽带螺旋线行波管输出功率低的缺点提供一种高效率的宽带螺旋线行波管,该宽带螺旋线行波管在频段内的饱和输出功率趋于同步,整管互作用效率高、输出功率高。为实现上述目的,本专利技术采用的技术方案为:一种高效率的宽带螺旋线行波管,包括输入螺旋线、输出螺旋线、夹持杆、管壳、集中衰减器,其中输入螺旋线、输出螺旋线通过夹持杆固定于管壳内,输入螺旋线和输出螺旋线之间用切断分隔,切断两边设置集中衰减器;其特征在于,所述输出螺旋线内径相较于输入螺旋线内径进行跳变,使得所述螺旋线行波管在工作频段内饱和输出功率点聚拢。进一步的,所述宽带螺旋线行波管工作频段为6~18GHz,其输入螺旋线长度为20~25mm、互作用长度为75~85mm,输入螺旋线内径为0.95~1mm,输出螺旋线内径为0.85~0.9mm。所述输入螺旋线和输出螺旋线的螺距为0.5mm。需要说明的是,本专利技术提出采用内径跳变技术设计得到的一种高效率的宽带螺旋线行波管,该宽带螺旋线行波管通过输出螺旋线内径跳变实现了螺旋线行波管在工作频段内各个频点的饱和输出功率点聚拢,使得行波管整管互作用效率高、输出功率高。但宽带螺旋线行波管的具体尺寸应根据其工作频段进行相应优化设计,本专利技术并不仅限于工作于6~18GHz的宽带螺旋线行波管。本专利技术提出的宽带螺旋线行波管采用内径跳变技术有效的解决带宽内饱和输出功率的同步问题,有效提高宽带螺旋线行波管的输出功率,且在等激励输入条件下输出功率高。附图说明图1是现有均匀螺距的宽带螺旋线行波管结构示意图,其中,1为集中衰减器、2为夹持杆、3为管壳,p1表示螺距、r1表示输入螺旋线内径、z1表示输入螺旋线长度、r2表示输出螺旋线内径、z2表示输出螺旋线长度,len表示互作用长度。图2是本专利技术提供高效率的宽带螺旋线行波管结构示意图。图3是本专利技术提供高效率的宽带螺旋线行波管的内径跳变对比示意图。图4是实施例中6-18GHz宽带螺旋线行波管均匀螺距下内径不变的输出功率示意图。图5是实施例中6-18GHz宽带螺旋线行波管均匀螺距下内径跳变后的输出功率示意图。图6是实施例中6-18GHz宽带螺旋线行波管均匀螺距下进一步优化切断位置后的输出功率示意图。图7是实施例中6-18GHz宽带螺旋线行波管均匀螺距下再进一步优化互作用长度后的输出功率示意图。具体实施方式下面结合具体实施例和附图对本专利技术做进一步详细说明。本实施例中提供工作于6-18GHz的宽带螺旋线行波管,但需要说明的是本专利技术并不仅限于6-18GHz的宽带螺旋线行波管。上述宽带螺旋线行波管包括输入螺旋线、输出螺旋线、夹持杆、管壳、集中衰减器,其中输入螺旋线、输出螺旋线通过夹持杆固定于管壳内,输入螺旋线和输出螺旋线之间用切断分隔,切断两边设置集中衰减器;所述输入螺旋线和输出螺旋线采用均匀螺距,其螺距均为0.5mm;其输入螺旋线长度为20~25mm、互作用长度为75~85mm,输入螺旋线内径为0.95~1mm,输出螺旋线内径相较于输入螺旋线内径进行跳变,跳变为0.85~0.9mm。上述6-18GHz的宽带螺旋线行波管按照常规设计宽带螺旋线行波管流程进行设计。首先,通过调整行波管各参数,使得行波管有较好的色散和耦合阻抗,得到了初步的螺旋线内径为0.9mm和螺距P1为0.5mm,即输入螺旋线和输出螺旋线的初始内径为0.9mm,初始螺距为0.5mm,如图1所示。根据指标暂定互作用长度为len为100mm,加入切断和衰减部分,暂定切断的位置为z1为20mm,进行计算,得到的输出功率如图4所示,我们发现在频段内都达到饱和输出功率并开始衰减,由于带宽比较宽,直接导致低频段、中频段和高频段的饱和输出功率的位置不同步,这就是宽带行波管设计要普遍面对的问题。然后,采用本专利技术提出内径跳变技术,经过仿真软件对输入螺旋线内径r1和输出螺旋线内径r2进行扫描优化,我们得到了一组优良的r1和r2,优化后的输入螺旋线内径r1为0.954mm,输出螺旋线的内径r2为0.872mm,如图2所示,修改输入螺旋线和输出螺旋线的内径并进行计算,我们得到的输出功率如图5所示。通过图5和图4的对比,我们发现中频端和高频端的输出饱和功率位置发生移动,使得低频段、中频段和高频端的输出饱和功率点靠拢,从而达到优化的目的,这对提高输出功率有显著的效果。再继续对切断位置z1进行扫描优化,得到了最佳的切断位置z1为25mm,进行计算后,输出功率如图6所示,可以看出最佳饱和输出功率同步位置,取最佳饱和输出功率同步位置作为互作用段的结束位置即len为78mm,进行计算后得到的输出功率如图7所示。综上,本实施例中6-18GHz的宽带螺旋线行波管经过最佳经优化设计后,其螺距为0.5mm;其输入螺旋线长度为25mm、互作用长度为78mm,输入螺旋线内径为0.954mm,输出螺旋线内径相较于输入螺旋线内径进行跳变,跳变为0.872mm。该宽带螺旋线行波管能够在等激励输入条件下实现400W以上的输出功率。通过本实施例进一步说明本专利技术提出的内径跳变的宽带螺旋线行波管有效克服了宽带螺旋线行波管饱和输出功率不同步的问题,有效提高了宽带螺旋线行波管的输出功率,但也从实施例中可以看出,针对不同工作频段的宽带螺旋线行波管其具体尺寸能够在本专利技术内径跳变结构的基础上通过优化设计得到,其输出螺旋线内径跳变也不仅限于变小,同时也说明了本文档来自技高网
...
一种高效率的宽带螺旋线行波管

【技术保护点】
一种高效率的宽带螺旋线行波管,包括输入螺旋线、输出螺旋线、夹持杆、管壳、集中衰减器,其中输入螺旋线、输出螺旋线通过夹持杆固定于管壳内,输入螺旋线和输出螺旋线之间用切断分隔,切断两边设置集中衰减器;其特征在于,所述输出螺旋线内径相较于输入螺旋线内径进行跳变,使得所述螺旋线行波管在工作频段内饱和输出功率点聚拢。

【技术特征摘要】
1.一种高效率的宽带螺旋线行波管,包括输入螺旋线、输出螺旋线、夹持杆、管壳、集中衰减器,其中输入螺旋线、输出螺旋线通过夹持杆固定于管壳内,输入螺旋线和输出螺旋线之间用切断分隔,切断两边设置集中衰减器;其特征在于,所述输出螺旋线内径相较于输入螺旋线内径进行跳变,使得所述螺旋线行波管在工作频段内饱和输出功率点聚拢。2.按权利要求1...

【专利技术属性】
技术研发人员:王珂胡玉禄胡权朱小芳李斌
申请(专利权)人:电子科技大学
类型:发明
国别省市:四川;51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1