一种压磁式应力传感器制造技术

技术编号:11922094 阅读:88 留言:0更新日期:2015-08-21 12:18
本实用新型专利技术提供了一种压磁式应力传感器。该传感器包括支撑壳体,与支撑壳体外部相连接的应力承受体,以及位于支撑壳体内部的第一磁体;第一磁体为磁致伸缩材料;第一磁体两端与支撑壳体内壁固定连接;工作状态时,外界应力作用在应力承受体上,支撑壳体发生形变引起第一磁体发生形变,因而第一磁体的磁性改变,其阻抗随之变化。该传感器结构简单、灵敏度高、成本低,可用于高速公路计重收费系统、工业自动化称量系统等高应力监测,也可用于微应力应变监测。

【技术实现步骤摘要】

本技术涉及应力检测领域,尤其是涉及一种压磁式应力传感器
技术介绍
应力传感器是工业中常用的传感器之一,广泛应用于工业自动控制领域,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、机床等众多行业。随着柔性电子学及可穿戴设备的发展,应力传感器越来越受到人们的关注。传统的应力传感器以机械结构型器件为主,利用弹性元件的弹性形变或液柱压力差反馈施加的压力,其缺点是尺寸大、体积重且不能提供电量输出,不利于系统集成。随着科技的发展,新材料和新的物理效应不断应用到应力传感器中,使应力传感器取得了长足发展。按照工作原理来划分,应力传感器可以分为压阻式、电容式、压电式、光纤式和压磁式等。压阻式应力传感器利用金属或者半导体的电阻随外界压力的变化而变化的原理进行工作。目前应用的压阻式应力传感器主要是硅基压力传感器,具有测量精度高、重复性好、稳定性好、测试压力范围较宽、输出信号强、体积小、利于集成等优点。但是,硅基压力传感器的使用温度一般低于125°C,不能在高温下使用,并且所测量的压力下限一般为lOOOPa,不能测量超微压力。电容式应力传感器利用电容量随压力改变而变化的原理进行工作,具有结构简单、测量精度高、稳定性好、功耗低、线性度好、体积小以及利于集成等优点。但是,电容式应力传感器易受到连接导线中的寄生电容影响,因此对测量电路要求较高。压电式应力传感器是根据压电效应制成的压力传感器,具有测量精度高、测试压力范围宽、使用温度范围宽、体积小、利于集成等优点。但是,压电式应力传感器对测量温度很敏感,通常需要利用内部测温系统进行校准或者需要采用恒温系统;此外,压电式应力传感器主要用于加速度和角速度的测量,一般不用于静压测量。光纤式应力传感器是利用外界应力改变时,在光纤中的传播的光的光强、相位或者偏振性能随外界应力的改变而变化的原理进行工作,但是该传感器需要复杂的光路处理设备,价格昂贵。压磁式应力传感器中的主要材料为磁致伸缩材料。磁致伸缩材料具有磁致伸缩效应,即在外磁场作用下,磁致伸缩材料的形状发生改变;另一方面,当磁致伸缩材料发生形变时,其磁性发生改变,即逆磁致伸缩效应。压磁式应力传感器利用逆磁致伸缩效应而工作,磁致伸缩材料在应力作用下发生形变时,其磁性发生改变,导致磁致伸缩材料的阻抗或者位于其磁场中的元件阻抗发生变化。压磁式应力传感器具有高灵敏度、线性度好、温度稳定性好、输出功率大、使用寿命长的优点,因此日益被人们所关注。目前,结构简单、灵敏度高、性能稳定的压磁式应力传感器是科技工作者的研宄热点,具有良好的应用前景。
技术实现思路
本技术的技术目的是提供一种结构简单、灵敏度高、性能稳定的压磁式应力传感器。为了实现上述技术目的,本技术所采用的技术方案为:一种压磁式应力传感器,包括支撑壳体,与支撑壳体外部相连接的应力承受体,以及位于支撑壳体内部的第一磁体;所述的第一磁体为磁致伸缩材料,即,具有磁致伸缩性;支撑壳体中,与应力承受体相连接的部分为承压部分,压力承受体位于承压部分的外壁;第一磁体两端与承压部分的内壁固定连接,或者,磁体两端通过连接体与承压部分的内壁固定连接;工作状态时,外界应力作用在应力承受体上,承压部分受到压应力而发生形变,该承压部分的形变以与应力承受体相连接的位置为中心向周围减弱;所述承压部分的形变引起第一磁体发生形变,该第一磁体的形变引起第一磁体的磁性改变,该第一磁体的阻抗随之改变,由与第一磁体两端相连接的导体输出该阻抗。作为优选,所述压磁式应力传感器还包括第二磁体,该第二磁体位于支撑壳体内部,为第一磁体提供偏置磁场,当第一磁体发生形变时,其离第二磁体的距离改变,使得第一磁体所受的偏置磁场改变,这引起第一磁体磁性的改变,等效于放大了第一磁体的磁性改变量,有利于提高传感灵敏度。作为优选,所述的连接体是两个连接在支撑端内壁的固定块。采用紧固件将第一磁体的一端与其中一个固定块固定连接,采用紧固件将第一磁体的另一端与另一个固定块固定连接。或者,每个固定块设置插孔,第一磁体的一端插入其中一个固定块的插孔中,第一磁体的另一端插入另一个固定块的插孔中。或者,将两种方式相结合,即每个固定块设置插孔,第一磁体的一端插入其中一个固定块的插孔中,第一磁体的另一端插入另一个固定块的插孔中,同时采用紧固件固定每个固定块中的第一磁体端部。所述的紧固件包括导电螺钉或非导电螺钉,当选用导电螺钉时,可以从该螺钉引出导线,用于输出阻抗值。为了进一步提高该压磁式应力传感器的灵敏度,还可以在所述第一磁体的外围设置线圈,S卩,所述第一磁体穿过该线圈内部;当所述第一磁体的磁性改变时,线圈阻抗随之发生变化,该线圈的阻抗值由线圈两端输出。在这种情况下,作为优选,所述线圈数目大于或者等于两个,相邻的线圈之间存在间距,各线圈串联在一起,以进一步提高线圈阻抗的变化量,从而提高灵敏度。更优选地,该压磁式应力传感器还包括至少一个力传导体,该力传导体一端固定连接支撑端内壁,另一端固定连接在第一磁体两端之间的位置,用于将承压部分受到压应力直接传导至第一磁体两端之间,从而增大第一磁体两端之间的位置的形变量,从而提高第一磁体的整体形变,有利于提高传感灵敏度。作为优选,所述线圈位于支架上,以方便调整线圈位置。所述支架结构不限,可以是固定在支撑壳体内部的固定架和/或固定杆。所述的第一磁体为磁致伸缩材料体系,包括磁致伸缩金属、磁致伸缩合金、非晶磁致伸缩材料等。作为优选,选择铁基和钴基非晶磁致伸缩材料,包括FeSiB、FeCuNbSiB,FeNiSiB, FeCoSiB, GdFeCo, CoSiB 等。所述的支撑壳体采用可以是不锈钢、Al、Cu、塑料等。为了避免外界磁场对支撑壳体内部的磁场产生,作为优选,所述的支撑壳体材料采用软磁材料制成,或者支撑壳体外围设置软磁材料层,用以对外界磁场进行磁屏蔽。所述的阻抗输出端(包括连接在第一磁体两端的导体端,和/或线圈两端)与阻抗分析仪相连接;或者,所述的阻抗输出端与电阻构成惠斯通电桥结构,且阻抗输出端为惠斯通电桥的一个桥臂,惠斯通电桥的输出与电压表或电流表或阻抗分析仪相连接。综上所述,本技术提供了一种压磁式应力传感器,通过结构的设计,将外界应力作用在应力承受体上产生压应力,应力承受体将该压应力传递至支撑壳体的承压部分,承压部分发生形变,该形变量呈中心强,周围逐渐减弱分布,因此引起与该承压部分相连接的第一磁体形变,从而使具有磁致伸缩性能的第一磁体的磁性发生改变,其阻抗随之发生变化,设置在其外围的线圈的阻抗也随之发生变化,通过检测该第一磁体的阻抗变化值,或者该线圈的阻抗变换值即能实现该应力检测。该传感器具有结构简单、灵敏度高、易安装、易维护、成本低、无线探测兼容等优点,可应用在不同的
,例如,用于高速公路计重收费系统中的轴重秤;工业自动化检测系统中的料罐秤、仓储秤、料斗秤;车载物品称重等高应力监测系统,也可用于微应力监测,例如微米级位移的测量、微应力和应变测量等领域。【附图说明】图1是本技术实施例1中压磁式应力传感器的结构示意图;图2是本技术实施例2中压磁式应力传感器的结构示意图;图3是本技术实施例3中压磁式应力传感器的结构示意图。【具体实施方式】以下结合附图实施例对本技术本文档来自技高网
...

【技术保护点】
一种压磁式应力传感器,其特征是:包括支撑壳体,与支撑壳体外部相连接的应力承受体,以及位于支撑壳体内部的具有磁致伸缩性的第一磁体;支撑壳体中,与应力承受体相连接的部分为承压部分,压力承受体位于承压部分的外壁;第一磁体两端与承压部分的内壁固定连接,或者,第一磁体两端通过连接体与承压部分的内壁固定连接;工作状态时,外界应力作用在应力承受体上,承压部分受到压应力而发生形变,该承压部分的形变以与应力承受体相连接的位置为中心向周围减弱;所述承压部分的形变引起第一磁体发生形变,该第一磁体的形变引起第一磁体的磁性改变,该第一磁体的阻抗随之改变,由与第一磁体两端相连接的导体输出该阻抗。

【技术特征摘要】

【专利技术属性】
技术研发人员:刘宜伟李辉辉李润伟巫远招孙丹丹
申请(专利权)人:中国科学院宁波材料技术与工程研究所
类型:新型
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1