废热回收除尘脱霾装置制造方法及图纸

技术编号:11761063 阅读:52 留言:0更新日期:2015-07-22 13:42
本实用新型专利技术公开了一种废热回收除尘脱霾装置,包括SP换热管、上管板、下管板、内筒体、螺旋板和外筒体;内筒体设有烟气进口管口和内筒体烟气出口管口;下管板连接有带空气进口管口的下管箱,上管板连接有带空气出口管口的上管箱;螺旋板盘旋设置在内筒体的外壁,内筒体的上端与外筒体的上端通过封板及加强肋板连接在一起,外筒体的上段设有外筒体烟气出口管口,其下端连接有带除灰口的灰斗。本装置具有高效换热效率,可以延长设备的结构时间,能对烟气中的尘灰进行高效分离并除灰,有效降低CO2和NOX等的排放量,在同等工况下阻力损失比同类设备小,其体积也小,实现换热与除尘脱霾,降低烟气温度。

【技术实现步骤摘要】

本技术涉及一种在电站锅炉、化工加热炉、生物质锅炉及工业窑炉的烟气余热回收的高效换热及除尘的装置,尤其是涉及一种在生物质锅炉的烟气含尘量大、含水量大的工艺条件下进行工作的废热回收除尘脱霾装置
技术介绍
随着社会的不断发展,人类对不可再生能源的依赖性越来越高,环境的污染也日益严重。为了缓解环境以及社会发展的压力,生物质锅炉越来越受到一些企业的青睐,它不仅解决了不可再生能源危机的影响,也缓解了环境的压力。生物质锅炉的燃料来源是利用秸杆、水稻杆、薪材、木肩、花生壳、瓜子壳、甜菜柏、树皮等所有废弃的农作物,经粉碎混合挤压烘干等工艺,最后制成颗粒状燃料,甚至有的企业把颗粒状燃料再进一步转化成可燃性气体再燃烧。这种燃料不仅来源广泛、清洁,又能解决了缓解污染的问题。为了节省投资成本,一些企业在锅炉尾部的换热面往往采用了常规结构,由于场地条件限制或者设计者经验问题,这种普通结构的换热面由于得不到合理的设计应用,换热效率低而导致体积庞大,耗材量大。生物质锅炉的烟气中含有大量的烟尘,并且由于燃料中的水分过高导致烟气中含有大量的水蒸汽,给锅炉尾部的普通换热面造成磨损、堵灰,使得换热管磨损漏风,或者引风机出力不畅,进一步造成排烟温度虚低,形成恶性循环而导致尾部换热面失效。为了避免这种情况的出现,锅炉不得不经常性停炉,打开尾部换热面进行清灰,或者维修、更换。这种经常性的维护不仅造成了企业维护费用的急剧增大的直接损失,而且由于企业停产造成了巨大间接损失。因此一种能够同时实现高效换热,又能够有效解决堵灰、磨损和除灰三大问题的设备是迫在眉睫的。
技术实现思路
本技术的目的是克服现有技术中的高效、堵灰、磨损和清灰等问题,而提供一种废热回收除尘脱霾装置。本技术是通过以下技术方案来实现的:废热回收除尘脱霾装置,垂直安装于锅炉的尾部烟道,包括SP换热管、上管板、下管板、内筒体、螺旋板和外筒体,SP换热管内置于内筒体内,SP换热管的上端与上管板连接,下端与下管板连接;内筒体的上端与上管板的外圆连接,下端与膨胀节连接后再与下管板的外圆连接,膨胀节位于SP换热管与内筒体之间;内筒体的上段设有烟气进口管口,烟气进口管口延伸至外筒体外,内筒体的下段设有置于外筒体内的内筒体烟气出口管口 ;下管板连接有下管箱,下管箱设有延伸至外筒体外的空气进口管口,上管板连接有上管箱,上管箱设有空气出口管口 ;所述上管板、下管板、SP换热管及内筒体组成换热单元;螺旋板盘旋设置在内筒体的外壁,内筒体的上端与外筒体的上端通过封板及加强肋板连接在一起,外筒体的上段设有外筒体烟气出口管口,其下端连接有带除灰口的灰斗;所述内筒体、螺旋板、灰斗、外筒体组成脱霾单元。SP换热管与内筒体之间采用膨胀节,可解决两者之间的高温膨胀差问题;内筒体与外筒体之间通过封板及加强肋板连接在一起,可解决两者之间的高温膨胀差问题;烟气自上而下通入内筒体内,并由内筒体烟气出口管口进入内筒体与外筒体之间的通道,最终从外筒体上部的外筒体烟气出口管口处流出,而空气则从下而上由SP换热管向向上,并从空气出口管口流出装置外部。本装置换热单元与脱离单元形成三维变空间的布置方式,而三维变空间指的是由于换热管的特殊形状使得管外的流道是横向多通道,纵向全空间,形成不同截面的管外三维空间不断改变,流体流动无死角,三维变空间的布置可使得装置把传统的碰撞流变为摩擦流,优化了烟气侧的流场,使流场更加合理均匀,在实现全逆流换热的同时又能解决了烟气对SP换热管的磨损,降低阻力损失。在同样的阻力损失下,可以大大提高流体流速,又从工艺手段上进一步提高了换热管的换热效率。螺旋板盘旋设置在内筒体的外壁,使得烟气能够沿着它的方向流动,利用离心力的原理,每旋转一周就把重的烟尘颗粒甩到外筒体的内壁面,受到重力作用的烟尘颗粒顺着外筒体的壁面或螺旋板集中掉落在灰斗,再经除尘口出去。脱霾单元的设置,使得烟气产生了剧烈的紊流,破坏了烟气靠近壁面的边界层流厚度,从换热机理上提高了换热管的换热效率,同时减少了换热管表面结垢的可能性。所述烟气进口管口与内筒体相切。烟气进口管口与内筒体相切,可保证了烟气进入内筒体局部阻力小。所述内筒体烟气出口管口设有第一导流板、第一上导流板、第一下导流板,第一导流板、第一上导流板、第一下导流板与内筒体构成导流腔体,第一导流板与内筒体相切。第一导流板、第一上导流板、第一下导流板的设置,可保证烟气从内筒体出来后能沿着内筒体外壁形成旋流。所述外筒体烟气出口管口设有第二导流板、第二上导流板、第二下导流板,第二导流板、第二上导流板、第二下导流板与外筒体构成导流腔体,第二导流板与外筒体相切,第二下导流板与螺旋板的最上端相切。第二导流板、第二上导流板、第二下导流板的设置,可使得烟气顺利流出设备而不会产生太大的局部阻力。所述外筒体外壁的设置有耳式支座,耳式支座卡设在所述锅炉尾部烟道内。耳式支座用于将本装置稳固安装在锅炉尾部烟道内。烟气通过烟气进口管口沿切线方向进入内筒体,烟气走SP换热管外与从空气进口管口进来的空气进行全逆流热交换。放热后的烟气从内筒体烟气出口管口沿切线进入外筒体与内筒体之间的环隙,由于含有比较大的烟尘,因此为了除掉烟气中的烟尘,内筒体外壁设置的螺旋板处于环隙中,使得烟气能够沿着它的方向流动。利用离心力的原理每旋转一圈就把重的烟尘颗粒甩到外筒体的内壁面,受到重力作用的烟尘颗粒顺着外筒体的壁面或者螺旋板集中掉落在灰斗,再经过除灰口出去。当烟气到达外筒体烟气出口管口时,烟气中的烟气已经干净。而走SP换热管内的冷空气经过吸热后经过上管箱直接从空气出口管口 I出去。本技术的优点是:1、提高热回收效率20-40%,降低排烟温度40-70°C ;2、具有除尘减霾装置,增强除尘能力30-40%,并且消除局部高温区,有效降低C02和NOX等的排放量,节能环保;3、同等工况下阻力损失比同类设备小30-70% ;4、同等工况下体积比同类设备小30-70% ;本装置与其他余热回收装置最大的不同点是:它不仅具有了高效换热能力,而且最重要的是它具有了延长设备的结垢时间,并且对烟气中的尘灰进行高效分离,再通过特殊结构进行有效除灰,使得经过该装置的烟气的含尘量大大减小。废热回收装置具有脱霾的特点是利用三维变空间变流场设计减少体积而多出来的空间巧妙融入除尘减霾结构,实现了换热与除尘脱霾有效结合目的。废热回收除尘脱霾装置不仅直接解决了设备磨损、堵灰和除霾的问题,并且间接解决了设备日常的更换、维修、维护的费用。提高了企业的效益,达到国际先进水平,实现综合节能10-25%,有效降低C02和NOX等的排放量,节能环保。提升电站锅炉、工业锅炉等节能减排创新能力,完善低温烟气高效回收除尘减霾的技术措施,降低锅炉烟气排烟温度,提升锅炉节能效率,减少灰尘排放,改善各行业工业锅炉生产环境。【附图说明】图1为本技术实施例的结构示意图;图2为图1的俯视图;图3为本技术实施例中外筒体烟气出口管口的局部示意图;图4为图3的A向示意图;图5为本技术实施例中内筒体烟气出口管口的局部示意图;图6为图5的B向示意图;图7为本技术实施例中烟气进口管口的局部示意图;图8为图1中螺旋板的结构示意图。图中附图标记含义:1、空气出口管口;2、上管本文档来自技高网...

【技术保护点】
废热回收除尘脱霾装置,垂直安装于锅炉的尾部烟道,包括SP换热管(14)、上管板(3)、下管板(17)、内筒体(4)、螺旋板(15)和外筒体(13),其特征在于:SP换热管(14)内置于内筒体(4)内,SP换热管(14)的上端与上管板(3)连接,下端与下管板(17)连接;内筒体(4)的上端与上管板(3)的外圆连接,下端与膨胀节(6)连接后再与下管板(17)的外圆连接,膨胀节(6)位于SP换热管(14)与内筒体(4)之间;内筒体(4)的上段设有烟气进口管口(11),烟气进口管口(11)延伸至外筒体(13)外,内筒体(4)的下段设有置于外筒体(13)内的内筒体烟气出口管口(5);下管板(17)连接有下管箱(7),下管箱(7)设有延伸至外筒体(13)外的空气进口管口(18),上管板(3)连接有上管箱(2),上管箱(2)设有空气出口管口(1);所述上管板(3)、下管板(17)、SP换热管(14)及内筒体(4)组成换热单元;螺旋板(15)盘旋设置在内筒体(4)的外壁,内筒体(4)的上端与外筒体(13)的上端通过封板(12)及加强肋板(10)连接在一起,外筒体(13)的上段设有外筒体烟气出口管口(9),其下端连接有带除灰口(8)的灰斗(19);所述内筒体(4)、螺旋板(15)、灰斗(19)、外筒体(13)组成脱霾单元。...

【技术特征摘要】

【专利技术属性】
技术研发人员:莫逊沈大伟朱冬生佘京鹏李立鸿
申请(专利权)人:中国科学院广州能源研究所汕头华兴冶金设备股份有限公司
类型:新型
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1