一种可并网运行的风光储一体微电网的监控方法技术

技术编号:11640548 阅读:147 留言:0更新日期:2015-06-24 16:59
一种可并网运行的风光储一体微电网的监控方法,该的监控方法可预测微电网中的风光发电设备的发电功率和微电网中的负载变化,可追踪大电网并网点电压信息,实时获取大电网调度指令,实时检测的蓄电池模块电池容量,设定储能系统放电区间,基于SOC分层控制策略,对储能系统能量进行优化管理,实时修正储能系统充放电功率,优化储能系统工作性能,制定和实施最适宜的控制策略,保障微电网在并网时按照大电网的需求参与大电网电压调节,保障并网运行时的电压稳定。

【技术实现步骤摘要】
一种可并网运行的风光储一体微电网的监控方法所属
本专利技术涉一种可并网运行的风光储一体微电网的监控方法。
技术介绍
能源和环境危机已经成为影响人类持续发展的重要问题,清洁、可再生能源的利用是解决这一问题的根本途径。随着风力发电、光伏发电、波浪发电等可再生能源发电技术的成熟,越来越多的可再生能源微电网以分布式形式接入电网,满足人们日常生产、生活用电的需求。以风电和光伏发电为主的微电网作为超高压、远距离、大电网供电模式的补充,代表着电力系统新的发展方向。风电机组的原动力为风能,风能由于风的间歇性和随机波动性使得风电机组的发出的功率是间歇和波动的,这些波动性的风能接入系统会给电力系统带来冲击。同时,由于风电机组为异步机,若不加以控制,在发出有功功率的同时,需要吸收一定的无功功率,不利用系统的电压稳定。当风电渗透率较低时,这些影响不明显,随着风电渗透率的提高,风能对电力系统的影响逐渐增大,在给电力系统带来经济效益的同时也给电网的运行造成了一定的困难。在风光发电并网比重较大的电力系统中,由于风电场和光伏电场输出功率具有不完全可控性和预期性,会在一定程度上改变原有电力系统潮流分布、线路输送功率及整个系统的惯量,从而对电网的有功、无功功率平衡、频率及电压稳定产生了影响。储能技术很大程度上解决新能源发电的波动性和随机性问题,有效提高间歇性微源的可预测性、确定性和经济性。此外,储能技术在调频调压和改善系统有功、无功平衡水平,提高微电网稳定运行能力方面的作用也获得了广泛研究和证明。在风光发电渗透率较高的电力系统中,电力系统出现频率及电压变化时,要求风光储集群对电力系统稳定性和电能质量的实时性较强,必须根据电力系统的实时状态,充分考虑到风光储集群的调节能力,才能保证电力系统的可靠与经济运行。
技术实现思路
本专利技术提供一种可并网运行的风光储一体微电网的监控方法,该的监控方法可预测微电网中的风光发电设备的发电功率和微电网中的负载变化,可追踪大电网并网点电压信息,实时获取大电网调度指令,实时检测的蓄电池模块电池容量,设定储能系统放电区间,基于SOC分层控制策略,对储能系统能量进行优化管理,实时修正储能系统充放电功率,优化储能系统工作性能,制定和实施最适宜的控制策略,保障微电网在并网时按照大电网的需求参与大电网电压调节,保障并网运行时的电压稳定。为了实现上述目的,本专利技术提供一种可并网运行的风光储一体微电网的监控方法,方法包括如下步骤:S1.风力发电设备和光伏发电设备监控模块实时获取风力发电设备和光伏发电设备的运行数据,并存储数据,实时获取微电网内负载功率需求情况;根据风力发电设备、光伏发电设备的运行数据,对未来预定时刻内的风力发电设备、光伏发电设备的输出有功和无功进行预测;S2.采集并网点电压信息,同时根据大电网调度指令确定微电网有功及无功输出需求;S3.实时检测获取蓄电池模块的SOC,设定储能系统放电区间,构建SOC分层控制策略;S4.将微电网有功及无功输出需求、当前SOC分层控制策略、当前微电网内负载功率需求、风力发电设备和光伏发电设备可输出有功和无功作为约束条件,实现微电网的优化运行。优选的,在步骤S3中,具体包括如下具体步骤:S31.设定储能系统放电区间所述储能系统放电区间确定器在接纳风电功率后未突破电网可利用空间极限值的时段,设定储能系统的放电区间α,0≤α<100%,即储能系统放电功率与接纳风电后剩余的空间比值为α;若系统无剩余可利用空间时α=1,若储能系统不放电α=0;基于放电区间α的储能系统充放电功率如下:其中PESS(t)为t时刻储能系统充放电功率;Pwd(t)、分别为t时刻风电场和光电场群实际输出功率之和以及风电和光电可运行域极值;α为储能系统的放电区间;储能系统充放电能量Et以及储能系统在各调度时段结束后充放电累积容量Wt如下所示:其中t1,t2分别为充放电的起始与结束时刻;ηcharge,ηdischarge分别为储能系统的充放电效率;PESS为储能系统充放电功率;E0为储能系统初始能量。S32.构建SOC分层控制策略所述SOC分层控制器,将储能系统SOC按照充放电能力分为以下五个层次:不充电紧急层、少充电预防层、正常充放电安全层、少放电预防层、不放电紧急层;储能系统充放电能量需求值PESS,经储能能量管理系统确定的修正系数KSOC进行动态调整,得到储能系统实际充放电指令PSOC_ESS;KSOC值与Sigmoid函数特性类似,因此利用Sigmoid函数对其进行修正,具体表达如下所示:储能系统处于充电状态下,PESS(t)>0xc=(S-Smax)/(Spre_max-Smax)(6)储能系统处于放电状态下,PESS(t)<0xf=(S-Smin)/(Spre_min-Smin)(8)经调整系数KSOC修正确定储能系统实际充放电功率PSOC_ESS(t)为:PSOC_ESS(t)=KSOCPESS(t)(9)其中S为储能系统的荷电状态;Smax为不充电紧急层的下限;Smax、Spre_max为少充电预防层的上下限;Spre_max、Spre_min为正常充放电安全层的上下限;Smin为少放电预防层的下限;Xc为储能系统充电状态下计算KSOC的系数;Xf为储能系统放电状态下计算KSOC的系数。优选的,光伏发电设备包括光伏组件,所述在步骤S1中,采用如下方式预测光伏发电设备的输出功率:S11.建立光伏组件的出力模型:Ppv(t)=ηinvηpv(t)G(t)Spv(10)式中Spv为光伏面板接收太阳光照辐射的面积(m2),G(t)光照辐射数值(W/m2),ηpv(t)为光伏组件能量转换效率,ηinv为逆变器转换效率;其中,光伏组件的能量转换效率与环境的温度有关,环境温度对光伏组件能量转换效率的影响为:式中ηr为光伏组件标准温度下测试的参考能量转换效率,β为温度对能量转换效率的影响系数,TC(t)为t时刻光伏组件的温度值,TCr为光伏组件参考标准温度值;光伏组件吸收太阳辐射,会与环境温度一起作用引起光伏组件温度发生变化,其表达式如下:式中T为周围的环境温度,Trat光伏组件运行的额定温度;S12.实时检测和收集光伏组件的周边的日照信息和环境温度,根据历史日照信息和环境温度,预测未来一段时间内的日照强度和环境温度;S13.根据未来一段时间内的日照强度和环境温度,利用上述光伏组件的出力模型计算未来时间内的光伏发电设备的发电功率。优选的,在S1后还有如下步骤,根据风速和风电场调频、调压备用容量需求,利用风电机组的超速控制与桨距角控制,确定各台风电机组的初始有功功率、无功功率出力及初始转速、初始桨距角。优选的,各台风电机组的初始转速的确定与风速有关,根据风电机组有功功率输出能力与电力系统调频备用需求,将风速划分为启动风速段、低风速段、中风速段和高风速段4部分。其中,启动风速段为切入风速到门槛风速,启动风速段风电机组有功功率输出能力较小,转速变化对风电机组有功功率输出影响不大;低风速段上限为利用超速控制可提供全部电力系统调频备用需求的风速;高风速段下限为采用最大功率点跟踪时,风电机组转速达到最大转速时的风速;对应不同风速,风电机组的初始转速不同,初始转速ω与风速关系满足:式(4)中,RW为风电机组半本文档来自技高网
...

【技术保护点】
一种可并网运行的风光储一体微电网的监控方法,方法包括如下步骤:S1.风力发电设备和光伏发电设备监控模块实时获取风力发电设备和光伏发电设备的运行数据,并存储数据,实时获取微电网内负载功率需求情况;根据风力发电设备、光伏发电设备的运行数据,对未来预定时刻内的风力发电设备、光伏发电设备的输出有功和无功进行预测;S2.采集并网点电压信息,同时根据大电网调度指令确定微电网有功及无功输出需求;S3.实时检测获取蓄电池模块的SOC,设定储能系统放电区间,构建SOC分层控制策略;S4.将微电网有功及无功输出需求、当前SOC分层控制策略、当前微电网内负载功率需求、风力发电设备和光伏发电设备可输出有功和无功作为约束条件,实现微电网的优化运行。

【技术特征摘要】
1.一种可并网运行的风光储一体微电网的监控方法,方法包括如下步骤:S1.风力发电设备和光伏发电设备监控模块实时获取风力发电设备和光伏发电设备的运行数据,并存储数据,实时获取微电网内负载功率需求情况;根据风力发电设备、光伏发电设备的运行数据,对未来预定时刻内的风力发电设备、光伏发电设备的输出有功和无功进行预测;S2.采集并网点电压信息,同时根据大电网调度指令确定微电网有功及无功输出需求;S3.实时检测获取蓄电池模块的SOC,设定储能系统放电区间,构建SOC分层控制策略;S4.将微电网有功及无功输出需求、当前SOC分层控制策略、当前微电网内负载功率需求、风力发电设备和光伏发电设备可输出有功和无功作为约束条件,实现微电网的优化运行;在步骤S3中,具体包括如下具体步骤:S31.设定储能系统放电区间所述储能系统放电区间确定器在接纳风电功率后未突破电网可利用空间极限值的时段,设定储能系统的放电区间α,0≤α<100%,即储能系统放电功率与接纳风电后剩余的空间比值为α;若系统无剩余可利用空间时α=1,若储能系统不放电α=0;基于放电区间α的储能系统充放电功率如下:其中PESS(t)为t时刻储能系统充放电功率;Pwd(t)、分别为t时刻风电场和光电场群实际输出功率之和以及风电和光电可运行域极值;α为储能系统的放电区间;储能系统充放电能量Et以及储能系统在各调度时段结束后充放电累积容量Wt如下所示:其中t1,t2分别为充放电的起始与结束时刻;ηcharge,ηdischarge分别为储能系统的充放电效率;PESS为储能系统充放电功率;E0为储能系统初始能量,S32.构建SOC分层控制策略SOC分层控制器,将储能系统SOC按照充放电能力分为以下五个层次:不充电紧急层、少充电预防层、正常充放电安全层、少放电预防层、不放电紧急层;储能系统充放电功率PESS,经储能能量管理系统确定的修正系数KSOC进行动态调整,得到储能系统实际充放电指令PSOC_ESS;KSOC值与Sigmoid函数特性类似,因此利用Sigmoid函数对其进行修正,具体表达如下所示:储能系统处于充电状态下,PESS(t)&...

【专利技术属性】
技术研发人员:许驰
申请(专利权)人:成都鼎智汇科技有限公司
类型:发明
国别省市:四川;51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1