一种基于耦合器的锁模激光器制造技术

技术编号:10318586 阅读:175 留言:0更新日期:2014-08-13 19:29
一种基于耦合器的锁模光纤激光器,属于超短脉冲激光领域。激光器为环形腔结构,其包括波分复用器(2)、增益光纤(3)、隔离器(5)和分别作为锁模启动元件的耦合器Ⅰ(4)和作为输出的耦合器Ⅱ(6)。激光腔内所有元件尾纤均为标准单模光纤,以保证相互之间模场匹配,从而实现低损耗熔接。泵浦光(1)经波分复用器(2)耦合入增益光纤(3),产生激光并在增益光纤(3)的环形腔内形成振荡。本实用新型专利技术真正实现了整个锁模激光器的全光纤化,避免了复杂的光路调节,大大提高了锁模激光器的环境稳定性、实用性和可靠性。(*该技术在2023年保护过期,可自由使用*)

【技术实现步骤摘要】
【专利摘要】一种基于耦合器的锁模光纤激光器,属于超短脉冲激光领域。激光器为环形腔结构,其包括波分复用器(2)、增益光纤(3)、隔离器(5)和分别作为锁模启动元件的耦合器Ⅰ(4)和作为输出的耦合器Ⅱ(6)。激光腔内所有元件尾纤均为标准单模光纤,以保证相互之间模场匹配,从而实现低损耗熔接。泵浦光(1)经波分复用器(2)耦合入增益光纤(3),产生激光并在增益光纤(3)的环形腔内形成振荡。本技术真正实现了整个锁模激光器的全光纤化,避免了复杂的光路调节,大大提高了锁模激光器的环境稳定性、实用性和可靠性。【专利说明】一种基于耦合器的锁模激光器
本技术涉及一种锁模光纤激光器,属于超短脉冲激光领域。
技术介绍
超短脉冲激光在物理学、化学、材料科学、环境监测、光电对抗等前沿科学研究、国民经济、国防安全领域中有着重要的应用。在实际的应用需求中,尤其是在精密测量、微纳加工、质谱分析等应用领域,需要超短脉冲激光具有很好的环境稳定性。锁模光纤激光器以其结构紧凑、稳定性高、抗干扰性好、光束质量高等优势成为近几年的研究热点。目前利用碳纳米管、可饱和吸收镜和非线性偏振旋转效应等多种锁模方法都实现了稳定的超短脉冲输出。但是这些锁模机制都存在一个共同的局限性和缺点,激光腔内锁模元件都为空间分立元件,无法与光纤进行熔接,不仅引入了额外的插入损耗、增加了对准难度,也大大降低了光纤激光器的环境稳定性。本技术利用高比例耦合输出的耦合器作为锁模启动和稳定元件。在低功率下,从耦合器入射端入射的功率经线性耦合作用,会从耦合输出端输出;在高功率下,由于非线性作用改变了纤芯的折射率,激光入射纤芯和耦合纤芯之间存在折射率差,线性耦合作用减弱,从入射端入射的功率会被直接输出。因此耦合器具有饱和传输的作用。激光器运转初始阶段,耦合器可以有效的从噪声信号中提取出具有较高峰值功率的噪声信号,起到启动锁模的作用。 锁模启动后,激光脉冲两沿强度较低,会被耦合输出,而脉冲中心部分强度较高,会被限制在入射纤芯中传输,耦合器起到稳定锁模的作用。为了避免现有锁模激光器引入空间分立元件,对比文献“Nonlinear mode - coupling for passive mode -1ocking:appIicationof waveguide arrays, dual - core fibers, and/or fiber array s,,Op t i csExpress, 13(22):8933 -8950,2005,它提出利用波导阵列、双芯光纤或光纤阵列作为锁模启动元件。通过波导或纤芯之间的非线性耦合特性来启动和稳定锁模运转。但是这种方法必须严格控制波导或光纤的长度等于耦合长度,而且增益光纤无论与波导阵列、双芯光纤或是光纤阵列之间都存在包层尺寸失配问题,熔接困难,熔接损耗较大。因此该方案目前仍然处于理论模拟阶段,实验上具有较大的实现难度。对比专利《基于掺杂光纤阵列的锁模激光器》CN102437501B,它提出利用掺杂光纤阵列同时作为增益和锁模元件,虽然有效避免了光纤直接熔接困难的问题,但是这种掺杂光纤阵列将增益、色散、锁模等所有功能都集中在一根光纤上,而无论是增益、色散还是锁模启动都对激光器的性能有很大的影响,因此这种方案对光纤的设计和拉制都具有极大的挑战,现有的光纤拉制工艺很难实现。
技术实现思路
本技术目的在于提供一种基于耦合器的全光纤锁模激光器。本技术通过下述技术方案加以实现的:—种基于耦合器的锁模激光器,激光器为环形腔结构,其包括波分复用器2、增益光纤3、隔离器5和分别作为锁模启动元件的耦合器I 4和作为输出的耦合器II 6。激光腔内所有元件尾纤均为标准单模光纤,以保证相互之间模场匹配,从而实现低损耗熔接。泵浦光I经波分复用器2耦合入增益光纤3,产生激光并在增益光纤3的环形腔内形成振荡。所述率禹合器I 4的直接输出端和I禹合输出端的分光比小于10:90,且输入端与增益光纤3输出端熔接,直接输出端与隔离器5的输入端熔接,耦合输出端为标准FC/APC接头,作为损耗不接入激光腔内,用于损耗功率较低的脉冲基底和两沿,实现启动和稳定锁模。所述耦合器II 6的直接输出端和I禹合输出端的分光比大于70:30,并小于95:5,且输入端与隔离器5的输出端熔接,直接输出端与波分复用器2的另一个输入端熔接,耦合输出端为标准FC/APC接头,用于腔内激光输出。所述隔离器5的隔离度大于30dB。进一步所述的泵浦光I中心波长为976nm或915nm。波分复用器2透射端口透射中心波长与泵浦光中心波长一致,带宽为IOnm,反射端口反射波长在IOOOnm?IlOOnm波段。增益光纤3掺杂稀土离子镱。隔离器5工作中心波长为1064nm,带宽为40nm。耦合器I 4和耦合器II 6工作波长在IOOOnm?IlOOnm波段。进一步所述泵浦光中心波长为800nm、976nm或1480nm。波分复用器2透射端口透射中心波长与泵浦光中心波长一致,带宽为IOnm ;反射端口反射波长在1520nm?1570nm波段。增益光纤3掺杂稀土离子铒。隔离器5工作中心波长为1550nm,带宽为40nm。耦合器I 4和耦合器II 6工作波长在1520nm?1570nm波段。与以往报道的锁模光纤激光器相比,本技术有如下优点:激光器内所有元件包括用于锁模的耦合器,其制作工艺已非常成熟,且是非常通用的商业元件,不需要额外的设计和复杂的加工工艺,大大节约了成本。激光器内所有元件都是光纤器件,且相互之间模场匹配,能方便的进行低损耗的熔接,不需要空间分立元件,真正实现整个锁模激光器的全光纤化,避免了复杂的光路调节,大大提高环境稳定性,提高了锁模激光器的实用性和可靠性。【专利附图】【附图说明】图1是本技术实例中全光纤激光器结构示意图。图2是数值模拟的本技术实例激光器输出的超高斯型脉冲波形及相应的线性啁啾曲线。图3是数值模拟的本技术实例激光器输出的光谱。图4是数值模拟的本技术实例激光器稳定运转后,脉冲在激光腔内的演变过程。图中:1、泵浦光,2、波分复用器,3、增益光纤,4、耦合器I,5、隔离器,6、耦合器II。【具体实施方式】下面结合附图和实施例对本技术加以详细说明:图1所示为本技术的全光纤激光器结构示意图。激光器为环形腔结构,泵浦光I通过泵浦/激光波分复用器2后进入激光腔,经增益光纤3放大后,依次通过耦合器I 4、隔离器5、耦合器II 6后回到波分复用器,在环形腔内形成振荡,产生激光。腔内所有元件的尾纤均为工作中心波长1064nm的标准单模光纤。泵浦光中心波长为976nm。增益光纤纤芯直径为lOum,包层直径为125um,纤芯掺杂镱离子,泵浦光吸收系数为13dB/m,增益光纤长度为0.6m。耦合器I 4的工作中心波长为1064nm,分光比为99:1。其中1%的直接输出端与隔离器5的输入端熔接,99%的f禹合输出端作为损耗。在低功率下,激光功率大部分被耦合输出,而在高功率情况下,高峰值功率的激光由于非线性作用会改变入射光纤纤芯的折射率,纤芯之间的模场失配增大,耦合作用大大降低,激光将主要保持在入射纤芯中传输。因此,高耦合输出比的耦合器具有饱和传输的作用,可以有效的从噪声本文档来自技高网
...

【技术保护点】
一种基于耦合器的锁模激光器,其特征在于:激光器为环形腔结构,其包括波分复用器(2)、增益光纤(3)、隔离器(5)和分别作为锁模启动元件的耦合器Ⅰ(4)和作为输出的耦合器Ⅱ(6);激光腔内所有元件尾纤均为标准单模光纤,以保证相互之间模场匹配,从而实现低损耗熔接;泵浦光(1)经波分复用器(2)耦合入增益光纤(3),产生激光并在增益光纤(3)的环形腔内形成振荡;所述耦合器Ⅰ(4)的直接输出端和耦合输出端的分光比小于10:90,且输入端与增益光纤(3)输出端熔接,直接输出端与隔离器(5)的输入端熔接,耦合输出端为标准FC/APC接头,作为损耗不接入激光腔内,用于损耗功率较低的脉冲基底和两沿,实现启动和稳定锁模;所述耦合器Ⅱ(6)的直接输出端和耦合输出端的分光比大于70:30,并小于95:5,且输入端与隔离器(5)的输出端熔接,直接输出端与波分复用器(2)的另一个输入端熔接,耦合输出端为标准FC/APC接头,用于腔内激光输出;所述隔离器(5)的隔离度大于30dB。

【技术特征摘要】

【专利技术属性】
技术研发人员:方晓惠宋晏蓉窦志远霍明超
申请(专利权)人:北京工业大学
类型:新型
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1