基于表面声波技术的细胞或粒子计数方法技术

技术编号:21912227 阅读:21 留言:0更新日期:2019-08-21 11:54
本发明专利技术公开了基于表面声波技术的细胞或粒子计数方法。现有细胞计数方法要么只适合体积大的细胞计数或价格昂贵,要么时间过长。本发明专利技术在声表面波器件的声表面波传播路径上制作微流通道;通过微量泵连接注射器输送细胞流体或粒子流体进入微流通道,利用鞘流技术驱动细胞流体或粒子流体实现聚焦,使微流通道中的细胞或粒子呈现单排列,细胞或粒子间保持距离,依次流过微流通道;声表面波器件与检测仪器连接,检测仪器工作后,测出传输参数,通过绘制传输参数在谐振频率点的值随着时间变化的图像,得到细胞或粒子数量信息。本发明专利技术通过测试传输参数的方式变现出来,达到了实时测试数据,提高了技术精度。

Cell or Particle Counting Method Based on Surface Acoustic Wave Technology

【技术实现步骤摘要】
基于表面声波技术的细胞或粒子计数方法
本专利技术涉及细胞计数技术,具体涉及基于表面声波技术的细胞或粒子计数方法。
技术介绍
细胞是构成生物体结构和功能的最基本单位,执行生命有机体的各种功能。人体内每天都有许多细胞(RBC)衰老死亡和许多细胞新生,以维持生命体新陈代谢的动态平衡。但是这个动态平衡被破坏,就会造成一系列健康问题。通过检测特定细胞的数量,可以鉴别和诊断某些疾病,因此细胞计数对医疗保健,疾病治疗,医学研究具有很重要的意义,也是一个非常有用的工具。例如感染HIV的人体内的CD+4淋巴细胞会慢慢减少,通过检测CD+4淋巴细胞的数量可以辅助诊断病情;白血病人体内的红细胞会随着病情的进展从正常值逐渐降低,通过检测红细胞的数量获知病情的变化。各种癌症是目前我国死亡率最高的病因。癌症在发展发育期间,部分癌细胞会进入血液系统循环。通过俘获,细胞计数获得血液中特定的癌细胞的浓度(即单位体积中的癌细胞),则可以有有效地诊断癌症,血液循环系统癌细胞的检测是近期发展起来的一门新兴科学技术,越来越受瞩目。现有的细胞计数技术大致分为以下几种:血球计数板计数法:将待测样品的悬浮液放在一块比普通载玻片厚的特制玻片上,载玻片上有4条槽构成三个平台,中间的平台被一横槽隔成两半,每边平台都刻上方格网,每个方格网共分为九个大方格,中间的大方格就是细胞计数室。然后置于显微镜下直接计数。使用该方法能数出每个小方格中的细胞的个体数目,根据该小格所占的体积,快速地推算出单位体积的溶液中含有的细胞总数。但若悬液中不加可以区分细胞死活的试剂时,计数通常计得的是活菌体和死菌体的总和(有时还有微小杂物),还有微小杂物也被计算在内,这样得出结果往往偏高,因此此法适用于体积较大的单细胞微生物的计数。该技术适合大量的细胞计数以及精度要求不高的情况下,如CD+4和红血球。流式细胞仪法:用于细胞数量定量化分析的仪器。具体操作是让细胞在流动的状态下流过流式细胞仪的检测区域,用激光激发出特异性荧光标记的抗体,被激发的荧光抗体发射出一定波长的荧光,细胞仪探测到激发光将光信号转化为电信号,同时检测细胞的物理和生化特征参数,根据这些参数和激发光特性区分不同种细胞,并且统计计数。这个方法虽然检测速度快,检测精度髙,但是配套仪器价格高昂,操作复杂,检测的成本高,操作环境要求高,在发展中的国家,或者偏远地区难以普及,且它的功能并不只针对细胞计数一种情况。这对于只有特定要求的检测实验会有某种程度上的浪费。图像细胞仪技术:结合显微镜和流式细胞术的新型细胞检测技术,将光学精密仪器测量细胞形态学参数技术结合图像处理技术,不仅可以测量大量细胞,还可以研究特定细胞的形态,得到细胞随时间变化的信息和组织内部细胞形态学特征,但是这种成像方法所用时间比较长,不能实时得到想要的结果。鉴于以上所述公开的细胞计数方法,存在几点缺陷,红细胞计数虽然能快速得到结果,但是结果可能会偏高,而且只适合体积大的细胞计数;流式细胞仪检测速度快,精度高,但是价格昂贵,偏远地区难以普及;图像细胞仪成像时间过长,不能实时得到结果。因此,需要考虑一种简单,可实时得到结果,精度高的方式去实现细胞计数。
技术实现思路
本专利技术的目的是针对现有技术的不足,提出一种稳定性好、小型化、价格合适的细胞计数系统,将流动的样本流置于声表面波器件SAW的传播路径上,利用流动的样本流中细胞与细胞培养液吸收能量的不同,传输参数(S21)的频率,幅度,相位随微流管道中的液体情况而变化,测试传输参数实现计数。本专利技术采用以下技术方案:本专利技术基于表面声波技术的细胞或粒子计数方法,具体如下:1)在压电衬底上制作具有叉指电极的声表面波器件。2)在声表面波器件的声表面波传播路径上制作微流通道。3)通过微量泵连接注射器输送细胞流体(细胞流体指培养液和细胞的混合物)或粒子流体(粒子流体指磷酸盐缓冲液和粒子的混合物)进入微流通道,利用鞘流技术驱动细胞流体或粒子流体实现聚焦,使微流通道中的细胞或粒子呈现单排列,细胞或粒子间保持距离,依次流过微流通道。4)声表面波器件与检测仪器连接,检测仪器工作后,测出传输参数,通过绘制传输参数在谐振频率点的值随着时间变化的图像,得到细胞或粒子数量信息。优选地,所述的压电衬底采用压电单晶材料或压电薄膜材料,压电单晶材料具体为铌酸锂(LiNbO3)、钽酸锂(LiTaO3)或石英,压电薄膜材料具体为氧化锌(ZnO)薄膜或氮化铝(ALN);叉指电极材料为金、铝、Mo、W、Pt、石墨烯、碳纳米管、碳纳米管复合材料或导电胶。优选地,所述的叉指电极是平行叉指电极或聚焦型叉指电极。若叉指电极为平行型,叉指宽度为100nm~100um,叉指间距为100nm~100um,声孔径为100um~10mm,叉指对数为10~100对;若叉指电极为聚焦型,弧度为120°,声表面波的波长为1~100um,叉指对数为10~50对。具有聚焦型叉指电极的声表面波器件的优点是将声波聚焦于一点,更适合于微小细胞或粒子的精确计数。优选地,所述的鞘流技术通过微流通道的结构实现,微流通道选用玻璃材料,微流通道包括玻璃管道A、玻璃管道B和玻璃管道C;玻璃管道A的入流口a通入细胞培养液,玻璃管道B的入流口b通入细胞与培养液的混合物,玻璃管道C的入流口c通入细胞培养液;玻璃管道A和玻璃管道C的出流口均连通玻璃管道B中部的汇流口e,玻璃管道B的出流口为d,玻璃管道A中细胞培养液、玻璃管道B中的细胞与培养液混合物以及玻璃管道C的细胞培养液在玻璃管道B的汇流口汇流后由玻璃管道B的出流口输出。由于玻璃管道A和玻璃管道C的鞘流聚焦作用,使得汇流口e到玻璃管道B的出流口d的这段管道中的细胞呈现单排列,细胞间保持距离。优选地,所述的鞘流技术通过微流通道的结构实现,微流通道选用玻璃材料,微流通道包括玻璃管道A、玻璃管道B和玻璃管道C;玻璃管道A的入流口a通入磷酸盐缓冲液,玻璃管道B的入流口b通入粒子与磷酸盐缓冲液的混合物,玻璃管道C的入流口c通入磷酸盐缓冲液;玻璃管道A和玻璃管道C的出流口均连通玻璃管道B中部的汇流口e,玻璃管道B的出流口为d,玻璃管道A中磷酸盐缓冲液、玻璃管道B中的细胞与磷酸盐缓冲液混合物以及玻璃管道C的磷酸盐缓冲液在玻璃管道B的汇流口汇流后由玻璃管道B的出流口输出。由于玻璃管道A和玻璃管道C的鞘流聚焦作用,使得汇流口e到玻璃管道B的出流口d的这段管道中的粒子呈现单排列,粒子间保持距离。优选地,所述测试传输参数的检测仪器是单独的声表面波检测仪或实验用的网络分析仪。声表面波器件的一个叉指电极接收检测仪器的射频信号,发出声表面波(SAW),通过压电衬底和微流通道,被声表面波器件的另一个叉指电极接收,从而检测仪器测得传输参数的频率、幅度和相位随微流管道中液体有无细胞或粒子情况而变化,并通过检测传输参数的频率、幅度和相位,获得声波路径上有无细胞或粒子的信息,具体为:当微流通道中无细胞时,液体吸收声波,接收端叉指电极所获得的信号较弱,测得传输参数在谐振频率点的值较小;当管道液体中含有细胞时,由于细胞有细胞膜,细胞膜的存在会阻止声波的吸收,声波被吸收的能量变小,接收端叉指电极所获得的信号比液体中不含有细胞时的信号强,测得传输参数在谐振频率点的值较大;而同等体积的磷酸盐缓冲液和同等体积的本文档来自技高网
...

【技术保护点】
1.基于表面声波技术的细胞或粒子计数方法,其特征在于:该方法具体如下:1)在压电衬底上制作具有叉指电极的声表面波器件;2)在声表面波器件的声表面波传播路径上制作微流通道;3)通过微量泵连接注射器输送细胞流体(细胞流体指培养液和细胞的混合物)或粒子流体(粒子流体指磷酸盐缓冲液和粒子的混合物)进入微流通道,利用鞘流技术驱动细胞流体或粒子流体实现聚焦,使微流通道中的细胞或粒子呈现单排列,细胞或粒子间保持距离,依次流过微流通道;4)声表面波器件与检测仪器连接,检测仪器工作后,测出传输参数,通过绘制传输参数在谐振频率点的值随着时间变化的图像,得到细胞或粒子数量信息。

【技术特征摘要】
1.基于表面声波技术的细胞或粒子计数方法,其特征在于:该方法具体如下:1)在压电衬底上制作具有叉指电极的声表面波器件;2)在声表面波器件的声表面波传播路径上制作微流通道;3)通过微量泵连接注射器输送细胞流体(细胞流体指培养液和细胞的混合物)或粒子流体(粒子流体指磷酸盐缓冲液和粒子的混合物)进入微流通道,利用鞘流技术驱动细胞流体或粒子流体实现聚焦,使微流通道中的细胞或粒子呈现单排列,细胞或粒子间保持距离,依次流过微流通道;4)声表面波器件与检测仪器连接,检测仪器工作后,测出传输参数,通过绘制传输参数在谐振频率点的值随着时间变化的图像,得到细胞或粒子数量信息。2.根据权利要求1所述的基于表面声波技术的细胞或粒子计数方法,其特征在于:所述的压电衬底采用压电单晶材料或压电薄膜材料。3.根据权利要求2所述的基于表面声波技术的细胞或粒子计数方法,其特征在于:压电单晶材料为铌酸锂、钽酸锂或石英,压电薄膜材料为氧化锌薄膜或氮化铝;叉指电极材料为金、铝、Mo、W、Pt、石墨烯、碳纳米管、碳纳米管复合材料或导电胶。4.根据权利要求1所述的基于表面声波技术的细胞或粒子计数方法,其特征在于:所述的叉指电极是平行叉指电极或聚焦型叉指电极;若叉指电极为平行型,叉指宽度为100nm~100um,叉指间距为100nm~100um,声孔径为100um~10mm,叉指对数为10~100对;若叉指电极为聚焦型,弧度为120°,声表面波的波长为1~100um,叉指对数为10~50对。5.根据权利要求1~4中任一项所述的基于表面声波技术的细胞或粒子计数方法,其特征在于:所述的鞘流技术通过微流通道的结构实现,微流通道选用玻璃材料,微流通道包括玻璃管道A、玻璃管道B和玻璃管道C;玻璃管道A的入流口a通入细胞培养液,玻璃管道B的入流口b通入细胞与培养液的混合物,玻璃管道C的入流口c通入细胞培养液;玻璃管道A和玻璃管道C的出流口均连通玻璃管道B中部的汇流口e,玻璃管道B的出流口为d,玻璃管道A中细胞培养液、玻璃管道B中的细胞与培养液混合物以及玻璃管道C的细胞培养液在玻璃管道B的汇流口汇流后由玻璃管道B的出流口输出;由于玻璃管道A和玻璃管道C的鞘流聚焦作用,使得汇流口e到玻璃管道B的出流口d的这段管道中的细胞呈现单排列,细胞间保持距离。6.根据权利要求1~4中任一项所述的基于表面声波技术的细胞或粒子计数方法,其特征在于:所述的鞘流技术通过微流通道的结...

【专利技术属性】
技术研发人员:轩伟鹏胡天玉张文瑞陈金凯黄汐威孙玲玲骆季奎
申请(专利权)人:杭州电子科技大学
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1