一种带隙基准电压源及电子设备制造技术

技术编号:20447797 阅读:19 留言:0更新日期:2019-02-27 02:33
本申请公开了一种带隙基准电压源及电子设备,其中,所述带隙基准电压源由启动模块和带隙核心模块构成,所述带隙基准电压源在环路补偿时,若使所述带隙基准电压源的次极点等于零点,则达到稳定条件所需的第二电容值远远小于现有技术中的带隙基准电压源所需的补偿电容,由此可得本申请实施例提供的带隙基准电压源的主极点远大于现有技术中的带隙基准电压源的主极点,因此本申请实施例提供的带隙基准电压源可以有效提高环路带宽,实现降低带隙基准电压源环路补偿难度、提升单位增益带宽且降低所需的补偿电容的目的。

A Bandgap Reference Voltage Source and Electronic Equipment

The present application discloses a bandgap reference voltage source and an electronic device, in which the bandgap reference voltage source is composed of a start module and a bandgap core module. When the bandgap reference voltage source is compensated in a loop, if the secondary pole of the bandgap reference voltage source equals zero, the second capacitance value required to achieve the stability condition is much smaller than that of the bandgap reference voltage source in the existing technology. As a result, the main pole of the bandgap reference voltage source provided in the embodiment of this application is much larger than that of the bandgap reference voltage source in the prior art. Therefore, the bandgap reference voltage source provided in the embodiment of this application can effectively improve the loop bandwidth, realize the reduction of the difficulty of the bandgap reference voltage source loop compensation, the enhancement of the unit gain bandwidth and the reduction of the required compensation. The purpose of capacitance.

【技术实现步骤摘要】
一种带隙基准电压源及电子设备
本申请涉及集成电路
,更具体地说,涉及一种带隙基准电压源及电子设备。
技术介绍
基准电压源作为集成电路中不可缺少的基本模块,广泛用于放大器、模数转换器、数模转换器、射频、传感器和电源管理芯片中。基准电压源包括基于齐纳二极管反向击穿特性的电压基准、基于PN结正向导通特性的电压基准和带隙基准等多种实现方式,其中带隙基准具有高精度、低温漂和高电源抑制比等优点,得到了广泛应用。现有技术中的带隙基准电压源可以通过调整电路的参数来得到零温度系数的带隙基准电压源。但这种带隙基准电压源的输出为高阻抗节点,使得电路的次极点较小,因此,如果想要补偿该次极点,就需要比较大的补偿电容。由此可见,这种传统的带隙基准电压源结构的次极点位置在较低频处,环路补偿比较困难,单位增益带宽(Gain–BandWidth,GBW)较低,所需补偿电容面积较大。
技术实现思路
为解决上述技术问题,本申请提供了一种带隙基准电压源及电子设备,以实现降低带隙基准电压源环路补偿难度、提升单位增益带宽且降低所需的补偿电容的目的。为实现上述技术目的,本申请实施例提供了如下技术方案:一种带隙基准电压源,包括:启动模块和带隙核心模块;其中,所述启动模块包括第一晶体管、第二晶体管、第三晶体管和第一电阻;所述第一晶体管的控制极用于接收所述带隙基准电压源的输出电压作为偏置电压,所述第一晶体管的输出极与所述第二晶体管的输出极、第二晶体管的控制极、第三晶体管的控制极以及第一电阻的一端连接;所述第一晶体管的输入极与所述第二晶体管的输出极以及第四按晶体管的输出极连接,作为所述启动模块的接地端;所述第一电阻远离所述第一晶体管的一端作为所述启动模块的输入端,所述第三晶体管的输出极作为所述启动模块的输出端;所述带隙核心模块包括第四晶体管、第五晶体管、第六晶体管、第七晶体管、第八晶体管、运算放大器、分压单元、第二电阻、第一电容和第二电容;所述第四晶体管的输入极与所述第五晶体管的输入极、以及所述启动模块的输入端连接,用于接收工作电压;所述第四晶体管的控制极与所述第五晶体管的控制极、第五晶体管的输出极、第六晶体管的输出极以及所述启动模块的输出端连接;所述第六晶体管的控制极与所述第二电阻的一端以及所述运算放大器的偏置输入端连接,所述第六晶体管的输入极与所述分压单元的输入端以及第一电容的一端连接,作为所述带隙基准电压源的输出端,所述第二电容远离所述第六晶体管的一端接地;所述第二电阻远离所述运算放大器的一端与所述第二电容连接,所述第二电容远离所述第二电阻一端与所述第七晶体管的控制极、第七晶体管的输出极、第八晶体管的控制极和第八晶体管的输出极均连接;所述运算放大器的第一输入端与所述分压单元的第一输出端以及所述第七晶体管的输入极均连接,所述运算放大器的第二输入端与所述分压单元的第二输出端连接;所述分压单元的第三输出端与所述第八晶体管的输入极连接。可选的,所述第一晶体管、第二晶体管、第三晶体管、第四晶体管、第五晶体管和第六晶体管均为场效应晶体管;所述第七晶体管和第八晶体管均为三极管。可选的,所述第一晶体管、第二晶体管、第三晶体管、第四晶体管、第五晶体管和第六晶体管的控制极为栅极;所述第一晶体管、第二晶体管、第三晶体管、第四晶体管、第五晶体管和第六晶体管的输出极为漏极;所述第一晶体管、第二晶体管、第三晶体管、第四晶体管、第五晶体管和第六晶体管的的输入极为源极;所述第七晶体管和第八晶体管的控制极为基极;所述第七晶体管和第八晶体管的输出极为集电极;所述第七晶体管和第八晶体管的输入极为发射极。可选的,所述第一晶体管、第二晶体管、第三晶体管和第六晶体管均为第一型场效应晶体管;所述第四晶体管和第五晶体管均为第二型场效应晶体管;所述第七晶体管和第八晶体管均为第二型三极管。可选的,所述第一晶体管、第二晶体管、第三晶体管和第六晶体管均为N型场效应晶体管;所述第四晶体管和第五晶体管均为P型场效应晶体管;所述第七晶体管和第八晶体管均为P型三极管。可选的,所述分压单元包括:第三电阻、第四电阻、第五电阻、第六电阻和第七电阻;其中,所述第三电阻和第四电阻串接,所述第三电阻远离第十电阻一端作为所述分压单元的输入端;所述第四电阻远离所述第三电阻一端与所述第五电阻和第六电阻的一端均连接;所述第五电阻远离所述第四电阻一端作为所述分压单元的第一输出端;所述第六电阻远离所述第四电阻一端与所述第七电阻的一端连接,作为所述分压单元的第二输出端;所述第七电阻远离所述第六电阻一端作为所述分压单元的第三输出端。一种电子设备,包括如上述任一实施例所述的带隙基准电压源。从上述技术方案可以看出,本申请实施例提供了一种带隙基准电压源及电子设备,其中,所述带隙基准电压源由启动模块和带隙核心模块构成,在工作过程中,当带隙基准电压源的供电电压源开始上电时,带隙基准电压源的输出电压在上电初始阶段尚未建立,第一晶体管关断;当带隙基准电压源的输出电压上升到大于第一晶体管的阈值电压时,第一晶体管导通,所述启动模块关闭,带隙基准电压源的输出电压脱离了零简并点,进入到稳定的工作状态。由于所述带隙基准电压源中的运算放大器的输出端接在了作为源极跟随器的第六晶体管的控制极,且产生了第一电流,该第一电流通过第四晶体管和第五晶体管的镜像后为运算放大器提供偏置电流,省去了现有技术中的带隙基准电压源的偏置电流产生电路。并且由电路工作原理可得,所述带隙基准电压源在环路补偿时,若使所述带隙基准电压源的次极点等于零点,则达到稳定条件所需的第二电容值远远小于现有技术中的带隙基准电压源所需的补偿电容,由此可得本申请实施例提供的带隙基准电压源的主极点远大于现有技术中的带隙基准电压源的主极点,因此本申请实施例提供的带隙基准电压源可以有效提高环路带宽,实现降低带隙基准电压源环路补偿难度、提升单位增益带宽且降低所需的补偿电容的目的。附图说明为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。图1为现有技术中的带隙基准电压源的电路结构示意图;图2为本申请的一个实施例提供的一种带隙基准电压源的电路结构示意图。具体实施方式正如
技术介绍
所述,现有技术中的带隙基准电压源结构的次极点位置在较低频处,环路补偿比较困难,单位增益带宽(Gain–BandWidth,GBW)较低,所需补偿电容面积较大。下面对具体原因进行说明。参考图1,图1为现有技术中的带隙基准电压源的电路结构示意图,该带隙基准电压源由第一晶体管M1、第二晶体管M2、第三晶体管M3、运算放大器OP、第一电容C1、第二电容C2、第四晶体管Q1、第五晶体管Q2、第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4和第五电阻R5构成,具体连接关系参考图1;其中,第一晶体管M1、第二晶体管M2、第三晶体管M3为场效应晶体管,第四晶体管Q1和第五晶体管Q2为三极管;第一晶体管M1和第二晶体管M2为P型场效应晶体管,第三晶体管M3为N型场效应晶体管;第四晶体管Q1和第五晶体管Q2均为P型三极管;图1中GND表示接地。在图1本文档来自技高网
...

【技术保护点】
1.一种带隙基准电压源,其特征在于,包括:启动模块和带隙核心模块;其中,所述启动模块包括第一晶体管、第二晶体管、第三晶体管和第一电阻;所述第一晶体管的控制极用于接收所述带隙基准电压源的输出电压作为偏置电压,所述第一晶体管的输出极与所述第二晶体管的输出极、第二晶体管的控制极、第三晶体管的控制极以及第一电阻的一端连接;所述第一晶体管的输入极与所述第二晶体管的输出极以及第四按晶体管的输出极连接,作为所述启动模块的接地端;所述第一电阻远离所述第一晶体管的一端作为所述启动模块的输入端,所述第三晶体管的输出极作为所述启动模块的输出端;所述带隙核心模块包括第四晶体管、第五晶体管、第六晶体管、第七晶体管、第八晶体管、运算放大器、分压单元、第二电阻、第一电容和第二电容;所述第四晶体管的输入极与所述第五晶体管的输入极、以及所述启动模块的输入端连接,用于接收工作电压;所述第四晶体管的控制极与所述第五晶体管的控制极、第五晶体管的输出极、第六晶体管的输出极以及所述启动模块的输出端连接;所述第六晶体管的控制极与所述第二电阻的一端以及所述运算放大器的偏置输入端连接,所述第六晶体管的输入极与所述分压单元的输入端以及第一电容的一端连接,作为所述带隙基准电压源的输出端,所述第二电容远离所述第六晶体管的一端接地;所述第二电阻远离所述运算放大器的一端与所述第二电容连接,所述第二电容远离所述第二电阻一端与所述第七晶体管的控制极、第七晶体管的输出极、第八晶体管的控制极和第八晶体管的输出极均连接;所述运算放大器的第一输入端与所述分压单元的第一输出端以及所述第七晶体管的输入极均连接,所述运算放大器的第二输入端与所述分压单元的第二输出端连接;所述分压单元的第三输出端与所述第八晶体管的输入极连接。...

【技术特征摘要】
1.一种带隙基准电压源,其特征在于,包括:启动模块和带隙核心模块;其中,所述启动模块包括第一晶体管、第二晶体管、第三晶体管和第一电阻;所述第一晶体管的控制极用于接收所述带隙基准电压源的输出电压作为偏置电压,所述第一晶体管的输出极与所述第二晶体管的输出极、第二晶体管的控制极、第三晶体管的控制极以及第一电阻的一端连接;所述第一晶体管的输入极与所述第二晶体管的输出极以及第四按晶体管的输出极连接,作为所述启动模块的接地端;所述第一电阻远离所述第一晶体管的一端作为所述启动模块的输入端,所述第三晶体管的输出极作为所述启动模块的输出端;所述带隙核心模块包括第四晶体管、第五晶体管、第六晶体管、第七晶体管、第八晶体管、运算放大器、分压单元、第二电阻、第一电容和第二电容;所述第四晶体管的输入极与所述第五晶体管的输入极、以及所述启动模块的输入端连接,用于接收工作电压;所述第四晶体管的控制极与所述第五晶体管的控制极、第五晶体管的输出极、第六晶体管的输出极以及所述启动模块的输出端连接;所述第六晶体管的控制极与所述第二电阻的一端以及所述运算放大器的偏置输入端连接,所述第六晶体管的输入极与所述分压单元的输入端以及第一电容的一端连接,作为所述带隙基准电压源的输出端,所述第二电容远离所述第六晶体管的一端接地;所述第二电阻远离所述运算放大器的一端与所述第二电容连接,所述第二电容远离所述第二电阻一端与所述第七晶体管的控制极、第七晶体管的输出极、第八晶体管的控制极和第八晶体管的输出极均连接;所述运算放大器的第一输入端与所述分压单元的第一输出端以及所述第七晶体管的输入极均连接,所述运算放大器的第二输入端与所述分压单元的第二输出端连接;所述分压单元的第三输出端与所述第八晶体管的输入极连接。2.根据权利要求1所述的带隙基准电压源,其特征在于,所述第一晶体管、第二晶体管、第三...

【专利技术属性】
技术研发人员:董渊王云松程剑涛
申请(专利权)人:上海艾为电子技术股份有限公司
类型:发明
国别省市:上海,31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1