一种偏振非依赖硅基液晶器件制造技术

技术编号:19214887 阅读:179 留言:0更新日期:2018-10-20 06:26
本发明专利技术公开了一种偏振非依赖硅基液晶器件,涉及蓝相液晶领域以及空间光调制器件领域,该器件包括上基板、公共电极层、绝缘层、反射金属层、蓝相液晶层、像素电极层和下基板,其中绝缘层在所述公共电极层与反射金属层之间,蓝相液晶层在所述反射金属层与像素电极层之间。通过在公共电极层与蓝相液晶层加入反射金属层,增加进入器件的光束所经历的光程,从而大幅度降低器件达到2π或者2π以上相位延迟时的电压,达到硅基液晶器件对液晶驱动电压的要求;该硅基液晶器件在上下电场作用时可以调制非偏振光,使器件具有偏振非依赖特性,解决常规硅基液晶器件需要进行偏振转换的问题,大大降低损耗。

【技术实现步骤摘要】
一种偏振非依赖硅基液晶器件
本专利技术涉及蓝相液晶领域以及空间光调制器件领域,尤其涉及一种偏振非依赖的硅基液晶器件
技术介绍
空间光调制器是一种对光波光场分布进行调制的元件,可通过改变光束的振幅或强度、相位、偏振态等特性进行调制,振幅以及相位调制方式较为常见,空间光调制器在通信、成像、显示、光学控制等领域中有着广泛的应用。然而,目前现有的空间光调制器都是偏振相关器件,向列相液晶构成的相位调制器需要进行表面取向才能产生相位调制,且具有偏振相关特性,即在器件应用系统中需加偏振系统,包括起偏器和检偏器等器件,这大大增加了系统复杂度、能量损耗以及成本,且占用一定的器件资源与空间。蓝相液晶由于拥有亚毫秒级的响应时间,无需配向处理,无外加电场时呈光学各向同性,以及在可见光波段呈周期性三维螺旋结构等特点,因而在场序列显示、相位调制器、三维可调光子晶体等方向的潜在应用吸引了很多人的目光。虽然蓝相液晶狭窄的温宽已经被拓宽到了超过60K,但高驱动电压问题限制了蓝相液晶的广泛应用。因此,本领域的技术人员致力于开发一种偏振非依赖的硅基液晶器件,该器件可有效降低硅基蓝相液晶器件的驱动电压,实现硅基蓝相液晶空间光调制器件,可实现对空间光束的偏振非依赖调制,降低能量损耗,节省器件资源与空间。
技术实现思路
有鉴于现有技术的上述缺陷,本专利技术所要解决的技术问题是如何能够大幅度降低蓝相液晶偏振非依赖相位调制器件的驱动电压,达到硅基液晶器件对液晶的要求,同时实现硅基液晶器件的偏振非依赖特性。为实现上述目的,本专利技术提供了一种偏振非依赖硅基液晶器件,包括上基板、公共电极层、绝缘层、反射金属层、蓝相液晶层、像素电极层和下基板,所述绝缘层在所述公共电极层与所述反射金属层之间,所述蓝相液晶层在所述反射金属层与所述像素电极层之间。进一步地,所述上基板为玻璃或塑料;所述下基板为硅基板。进一步地,所述公共电极层是透明导电金属氧化物或透明导电有机高分子材料形成的片状电极。进一步地,所述绝缘层为SiO2或Si3N4。进一步地,所述反射金属层为高反射率条状铝层。进一步地,反射金属层宽度范围为9.84um至14.76um;所述反射金属层间隙的范围为0.55um至4.1um。进一步地,所述像素电极层是高反射率不透明导电金属形成的一组互相平行的条状电极或块状电极。进一步地,所述透明导电金属氧化物为ITO或。进一步地,所述透明导电有机高分子材料为PEDOT。进一步地,所述像素电极层宽度为6um,像素电极层间隙为2um;所述蓝相液晶层厚度为6um。本专利技术旨在提供一种偏振非依赖的硅基液晶器件,可实现对空间光束的偏振非依赖调制,大幅度降低蓝相液晶偏振非依赖相位调制器件的驱动电压,使得蓝相液晶可在硅基板上实现对空间光束的调制。为实现上述目的,本专利技术设计出一种硅基液晶器件结构,该结构可增加光束在器件内部经历的光程,可大幅度降低蓝相液晶的驱动电压,实现硅基蓝相液晶器件。本专利技术通过以下技术方案实现的:在公共电极层与蓝相液晶层之间增加一层反射金属层,用来增加器件内光束所经历的光程,以此来大幅度降低达到2π或者2π以上相位延迟时的电压,该条状反射金属层的周期以及间隙根据光束在器件内光束分布来进行设计计算,同时,为了绝缘公共电极层与反射金属层,在其间增加了一层透明绝缘层。本专利技术提出的偏振非依赖硅基液晶器件可实现对空间光束的偏振非依赖调制,实现设计简单,通过增加反射金属层以及相应绝缘层来增加器件内光束所经历的光程,以此来大幅度降低蓝相液晶达到2π或者2π以上相位延迟时的驱动电压,同时使用蓝相液晶材料,使得该器件具有偏振非依赖特性,解决了常规硅基液晶相位调制器件需要进行偏振转换的问题,大大降低了损耗。以下将结合附图对本专利技术的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本专利技术的目的、特征和效果。附图说明图1是本专利技术一个较佳实施例的偏振非依赖硅基液晶器件在蓝相液晶相态下未加电时的截面图;图2是本专利技术一个较佳实施例的偏振非依赖硅基液晶器件在蓝相液晶相态下加电后的截面图;图3是本专利技术一个较佳实施例的光束在未加电调制的偏振非依赖硅基液晶器件行进的光路示意图;图4是本专利技术一个较佳实施例的光束在水平向左偏转调制的偏振非依赖硅基液晶器件行进的光路示意图;图5是本专利技术一个较佳实施例的光束在水平向右偏转调制的偏振非依赖硅基液晶器件行进的光路示意图;图6所示本专利技术一个较佳实施例的偏振非依赖硅基液晶器件相位延迟测量系统图;图7是本专利技术一个较佳实施例的偏振非依赖硅基液晶器件相位延迟与电压关系曲线图。其中,1-下基板;2-像素电极层;3-蓝相液晶层;4-反射金属层;5-绝缘层;6-公共电极层;7-上基板;8-空间光束;9-He-Ne激光器;10-分光棱镜;11-反射镜;12-蓝相液晶硅基液晶器件;13-光功率计。具体实施方式以下参考说明书附图介绍本专利技术的多个优选实施例,使其
技术实现思路
更加清楚和便于理解。本专利技术可以通过许多不同形式的实施例来得以体现,本专利技术的保护范围并非仅限于文中提到的实施例。在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。附图所示的每一组件的尺寸和厚度是任意示出的,本专利技术并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。图1和图2所示为偏振非依赖硅基液晶器件结构及其偏振非依赖特性说明图。图1为硅基液晶器件在蓝相液晶相态下未加电时的截面图,图2为硅基液晶器件在蓝相液晶相态下加电后的截面图。偏振非依赖硅基液晶器件结构主要有下基板1,像素电极层2,蓝相液晶层3,反射金属层4,绝缘层5,公共电极层6,上基板7,图中8为空间光束8。将蓝相液晶聚合物的混合物在各向同性状态下灌入到图1所示的液晶器件中,在温控台上控制样品以一定速率降温,调节温度至蓝相液晶温宽范围之内,蓝相液晶均匀分散在蓝相液晶层3中。由图1可看出,由于蓝相液晶具有宏观各向同性特性,其液晶分子折射率分布呈球状,因而该器件在不同偏振方向的入射光下具有相同的特性,在图2中,电压加至像素电极层2与公共电极层4之间,蓝相液晶分子折射率分布由球形变为椭球状,光轴方向垂直于上下基板,当光从上基板垂直入射时,在垂直于光传播方向上,蓝相液晶分子在不同偏振方向的入射光下依旧具有相同的折射率,因而实现了相位调制器件的偏振非依赖特性。图3所示为光束在一种未加电调制的偏振非依赖硅基液晶器件行进的光路示意图。光束从条状金属层最右侧边缘处进入,经过蓝相液晶层3,到达像素电极层2,被像素电极反射,反射后的光束再次经过蓝相液晶层3抵达反射金属层4,被反射金属层4反射,第三次经过蓝相液晶层3,而后反复经过反射,在经历过多次光程后,光束从临近的间隙中出射,图中a为条状反射金属层4宽度,b为两个条状反射金属层4间隙,c为像素电极层2宽度,d为像素电极层2间隙,角1为空间光束8在像素电极层2上的入射角,角2为空间光束8经过像素电极层2反射后的反射角。图4和图5所示为光束在水平向左以及水平向右偏转调制的偏振非依赖硅基液晶器件行进的光路示意图。在本设计中,各参数都选取某一特定数值,以此为例,假设像素电极层2宽度c为6um,像素电极层2间隙d为2um,蓝相液晶层3厚度为6um,光束入射角度1为20°,由于电本文档来自技高网
...

【技术保护点】
1.一种偏振非依赖硅基液晶器件,其特征在于,包括上基板、公共电极层、绝缘层、反射金属层、蓝相液晶层、像素电极层和下基板,所述绝缘层在所述公共电极层与所述反射金属层之间,所述蓝相液晶层在所述反射金属层与所述像素电极层之间。

【技术特征摘要】
1.一种偏振非依赖硅基液晶器件,其特征在于,包括上基板、公共电极层、绝缘层、反射金属层、蓝相液晶层、像素电极层和下基板,所述绝缘层在所述公共电极层与所述反射金属层之间,所述蓝相液晶层在所述反射金属层与所述像素电极层之间。2.如权利要求1所述的偏振非依赖基液晶器件,特征在于,所述上基板为玻璃或塑料;所述下基板为硅基板。3.如权利要求1所述的偏振非依赖基液晶器件,特征在于,所述公共电极层是透明导电金属氧化物或透明导电有机高分子材料形成的片状电极。4.如权利要求1所述的偏振非依赖基液晶器件,特征在于,所述绝缘层为SiO2或Si3N4。5.如权利要求1所述的偏振非依赖基液晶器件,特征在于,所述反射金属层为高反射率...

【专利技术属性】
技术研发人员:孙长俐陆建钢
申请(专利权)人:上海交通大学
类型:发明
国别省市:上海,31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1