一种基于阶跃滤光片的超光谱成像仪制造技术

技术编号:12951577 阅读:37 留言:0更新日期:2016-03-02 11:57
本发明专利技术公开了一种基于阶跃滤光片的超光谱成像仪,分光系统使用创新的方式-阶跃滤光片实现光谱分离,整个光学系统采样二次成像的方式实现阶跃滤光片和焦平面探测器的分离,采用压电陶瓷的偏转机构,精确的进行像移补偿,探测器对地物目标1/m冗余度的过采用,防止由于滤光片部分扫描行不透光引起的地物目标的漏扫。整个系统结构简单,重量轻,能提高系统的等效读出帧频m-1倍,并且能够依据系统应用需要自由选取光谱波段,这种超光谱成像系统对读出帧频要求很高以及对光谱波段要求不连续的场合有特别突出的优势。

【技术实现步骤摘要】

本专利技术涉及航天航空领域中的遥感技术处理方法,具体可以应用到对地观测及军 事侦察等观测地球表面物体光谱和几何信息获取方法的相机中。
技术介绍
在航空航天领域,超光谱成像仪是对地观测、军事侦察等卫星的重要载荷。通过这 些载荷可以同时获取观测目标的空间几何信息和光谱信息,具有独特的信息获取和特征识 别能力。超光谱成像仪的仪器设计方法直接关系到系统的核心性能指标。 在超光谱仪器设备中,一般由全色光学系统、分光系统,焦平面探测器、处理电路 及机械结构等组成。分光系统是超光谱成像仪中的一个核心部件,其设计方法和特性对超 光谱成像仪的关键技术指标起决定性作用。通常使用的棱镜分光、光栅分光和傅立叶分光, 分开的光谱都是连续的光谱,分配到每行像元上的光谱是一个特定波段的光谱唯一的对应 到此行像元上,要求分光器件在通光谱段内光学效率高,在通光谱段范围外的光谱不通过。 按照这种方式的其它分光组件,分光光谱在宽光谱范围内都是连续的,一般采用推扫方式 成像,随着技术的进步和应用的需要,对超光谱成像仪的速高比和快速成像能力要求越来 越高,这样要求焦平面探测器有很高的读出帧频,数据量会非常大,会对后续数据处理及传 输带来极大的压力,并且同一个光学通道范围内,光谱只能设定的该谱段附近,不能根据实 际应用需要自由选取。
技术实现思路
基于以上传统分光方式超光谱成像仪局限的存在,本专利技术提出一种新的超光谱成 像仪一基于阶跃滤光片的超光谱成像仪。使用该方法和像移补偿设计的超光谱成像仪,能 极大的提高系统的等效读出帧频,依据应用需要,还能够方便的选取光谱波段。 本专利技术的超光谱成像仪由如图1所示的五大部分组成:光学系统,偏转平台的像 移补偿系统,阶跃滤光片,面阵探测器,电子学系统。 所说的光学系统如图2所示,其包括一次光学的望远镜和二次中继光学,阶跃滤 光片在一次焦面上,扫描补偿镜在阶跃滤光片前面,探测器在二次焦平面上,利用二次成像 技术,实现阶跃滤光片和焦平面探测器的分离。 所说像移补偿系统为压电陶瓷的偏转装置,由电子学系统控制。 所说阶跃滤光片在一次焦平面上,实现光谱的分离。 所说面阵探测器在二次焦平面上,实现光谱信号的光电转化。 所说的电子学系统包括压电偏转装置的驱动和探测器的驱动以及数据的采集等。 系统组成原理:地物信号经望远镜引入凝视像移补偿镜,像移补偿镜进行摆动,在 飞行平台沿轨飞行时,使到探测器上地物像一直凝视该地物。光线经过像移补偿镜的反射 进入望远镜焦面上的阶跃滤光片,全谱段光线通过滤阶跃滤光片后的,变为窄带光谱的光 线,实现了光谱分离。光谱谱段阶跃型的光线经过二次成像光学,再次成像到二次成像系统 焦面上的面阵探测器上。探测器响应入射的光谱能量,产生电信号,完成光电信号的转换。 探测器输出的电信号经过模拟放大处理,A/D采样格式编排后采集到计算机,通过探测器数 据的几何重构和光谱重构,可以获得地表几何和光谱信息。 所说系统中的关键部件阶跃滤光片,其透过光谱阶跃变化,其光谱和几何结构如 图3所示。几何上每个谱段对应m个扫描行,在此谱段内每个扫描行滤光片处透过相同的 光谱波段,m个扫描行的一端边界有一个扫描行宽度的过度带,过渡带不透光。不同的大滤 光片衔接处有一个拼接带,拼接带的宽度为m个扫描行。这样所有的光谱波段和拼接带几 何上都对应m个扫描行,方便整个阶跃滤光片制作、像移补偿的实施和数据的几何及光谱 重构。 在光谱特性上,单个大滤光片由于制作的限制,其光谱是在一定光谱波段范内阶 跃变化,变化趋势单调一致。但拼接的各大滤光片光谱波段可以任意设置,依据应用的需要 进行选择。几何上,几个大滤光片拼接只要符合与探测器的匹配要将就可以了。 每个波段对应m个探测器的扫描行,在此波段内每个扫描行滤光片处透过相同的 光谱波段。对于具有m个扫描行相同光谱超光谱成像仪,通过像移补偿成像,就可以将超光 谱仪器的系统等效读出帧频提高m-Ι倍,相应的也等效于系统对焦平面探测器的读出速率 降低m-Ι倍,其本质是利用系统空间的余量换取时间的不足。 系统像移补偿系统原理如图4所示,在相机飞行过程中,电路驱动压电陶瓷偏转 装置,朝相机飞行的反方向转动,那么落到探测器的上的像始终凝视同一地面目标,起到稳 像的作用。 像移补偿的运动位移曲线如图5所示,整个补偿位移包括两个过程,像移补偿运 动过程和返回过程,图中T1~TAn为补偿过程,其运动角速度和相机飞行造成的焦平面上 的光学角速度大小相等,方向相反;TAn~TBn为补偿镜返回的阶段,以准备下一次补偿,曝 光时间和返回时间的总和等于m-Ι行像元的曝光时间。像移补偿的起始时刻要传输给焦平 面探测器,让像移补偿和探测器驱动同步起来。 所说像移补偿几何匹配方面,阶跃滤光片m个扫描行对应一个光谱波段,但由于 两个波段有过渡带不通光,其实谱段通光的扫描为m-Ι行,为了获取所有地物目标的光谱 信息,必需使像移补偿的一次曝光对应于m-Ι行扫描行。其本质相当于探测器对地物目标 Ι/m冗余度的过采样。 对探测器成像的光谱数据进行几何重构和光谱重构,提取地物目标超光谱数据立 方体,就可以交付应用部门使用。 本专利技术有如下有益效果: 1.本专利技术采用阶跃滤光片进行光谱分离,结构简单,重量轻,能够依据应用需要, 方便的设置光谱谱段和光谱分辨率。 2.本专利技术通过像移补偿和阶跃滤光片的配合使用,可以使系统的等效读出帧频所 提高m-Ι倍。 3.本专利技术可以应用到各种类型的超光谱成像仪器中,特别是对读出帧频要求很高 以及对光谱波段要求不连续的超光谱成像仪有特别突出的优势。【附图说明】 图1相机组成功能框图。 图2相机光学系统。 图3阶跃滤光片的结构图。 图4像移补偿空间原理图。 图5像移补偿位移波形图。 图6光谱重构图。【具体实施方式】 下面结合附图对本专利技术的【具体实施方式】作进一步的详细说明: 依据以上设计思想,设计出一套验证系统的超光谱成像仪,其具体技术指标如下 表: 轻型超光光谱相机技术指标 设计64通道的阶跃滤光片,其光谱范围为1. 1~2. 5μm,由四个大波段滤光片拼 接成一个整体的滤光片,其设计的几何尺寸要严格的和焦平面探测器尺寸对应。焦平面探 测器采用S0RRADIR的SW320*256HgCdTe探测器。 所说图2的光学系统中,像移补偿系统是动态的,调整其偏转方向使偏转方向和 穿轨平行,光轴通过偏转平台偏转角的几何顶点,偏转平台的角度固定维和光轴垂直。 调整像移补偿偏转平台的位置和角度后,调整阶跃滤光片的偏转、俯仰以及其具 体外置,让其处在一次焦平面上,滤光片的光谱维和沿轨方向平行。整个滤光片的平面垂直 于光轴。 安装二次中继光学,让其成像于二次焦平面,将焦平面探测器固定在二次焦平面 上,调整其位置、偏转和俯仰,使焦平面探测器平面垂直于主光轴,探测器的光谱维和阶跃 滤光片的光谱维一致,这样在几何上,整个相机就安装完毕。 所说的像移补偿系统要和探测器的曝光以及阶跃滤光片的结构结合起来调整。根 据几何位置,调整像移补偿系统的偏转角度及速度,使其对滤光片对应m-1个扫描行地物 目标成像,像移补偿系统给出初始曝光位置时刻给焦平面探测器曝光同步信号,焦平面探 测器成光谱图像。 对探测器而言,相当于对地物Ι/m冗本文档来自技高网...

【技术保护点】
一种基于阶跃滤光片的超光谱成像仪,其特征在于:所述的超光谱成像仪采用阶跃滤光片分光的方法,超光谱成像仪采用二次成像技术,阶跃滤光片在一次焦平面上,焦平面探测器在二次焦平面上,实现阶跃滤光片和探测器的分离。

【技术特征摘要】

【专利技术属性】
技术研发人员:陈小文李春来王建宇
申请(专利权)人:中国科学院上海技术物理研究所
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1