加速度传感器结构及其使用制造技术

技术编号:10709316 阅读:96 留言:0更新日期:2014-12-03 15:03
一种MEMS传感器结构,其包括第一构件和第二构件,所述第一构件和所述第二构件彼此耦合以用于双差分检测,且所述第一构件和所述第二构件被对称地安置着从而以相移的方式提供用于双差分检测的量。如果所述传感器变形,那么因为所述第一构件和所述第二构件的特定的对称安置,所以至少部分地消除了该位移的影响。

【技术实现步骤摘要】
【国外来华专利技术】加速度传感器结构及其使用
本专利技术一般而言涉及MEMS(micro-electro-mechanicalsystem:微机电系统),但是更具体地而言涉及如针对MEMS传感器结构的独立权利要求的前序中所表述的加速度传感器结构。本专利技术还涉及如各个独立权利要求的前序中所表述的传感器结构矩阵、传感器装置和系统。
技术介绍
对主体的加速度进行感测从而提供依赖于在作用力的影响下所述主体的动力学状态的信号,是被广泛应用的用于判定主体的位置和/或地点的方法。为了该目的,能够使用各种各样的传感器,但是MEMS结构因为它们的小尺寸所以适合于许多应用。在微电子学中,日益增长的需求已使得可以开发出越来越好的结构以实现在许多领域中遇到的用途,所述许多领域例如涉及车辆、家用电器、衣服、鞋,这里仅仅提及了一些应用领域,在这些应用领域中,专利类别可能会包括与MEMS有关的加速度传感器。然而,在本专利申请的优先权日,已知的MEMS结构遇到了一些会限制它们在工业中的使用的问题。或者,能够把使用加速度传感器的有关产品做成得充分满足它们的所期望的目的,但是现有技术的MEMS结构的使用可能会需要附加的信号处理、误差校正和/或补偿构件以及解决方案,以便获得能实现其目的的部件。MEMS部件的操作能够通过外部的机电构件而得以改善,但是通常来说这样的构件使得整体结构复杂化且增加了制造成本。它们还会随着外部的相互作用的各方的数量的增加,使该结构对故障很敏感。在下面的图1至图5B中,展示了公知技术的一些缺点。图1图示了公知技术的具有X方向和/或Y方向敏感单元的示例性传感器结构,所述敏感单元基于由梳状结构的检测构件进行的电容检测来执行加速度感测。该单元包括具有有效块的可移动框架102。该可移动框架的有效块被布置用于保持着可移动电极103的组合体。利用标记103只表示了一个这样的电极,但是本领域的技术人员知道:在所述可移动电极的组合体中,可以有不止一个的电极。本领域的技术人员还知道:如果在该组合体中有许多可移动电极,那么就需要恰当地考虑它们对有效块的贡献。利用数字和字符的组合106、107N、107P来表示如下这样的元件:通过这些元件,所述单元可以被锚固到物体的表面。附加的字母“N”表示负电荷和/或负电压,且附加的字母“P”表示正电荷和/或正电压。单纯的数字106可以表示地电位和/或可以表示具有单纯的机械特性。因此,由图1中的符号标志N和P分别表示的静电极105N和104P可以与相互连接的锚固件107N、107P一样具有相应的极性。锚固件结构106、107N、107P可以与地面绝缘,但是该绝缘布置本身在此上下文中不是至关重要的。MEMS结构的领域中的技术人员知道许多的在必要时使MEMS结构中的组成部件绝缘的方法。可移动框架102通过弹簧101而被连接至锚固件结构106。图1中的现有技术结构是差分结构,即,当利用弹簧101而被悬挂的框架102沿着+X方向移动时,在带P标记的电容增大的同时带N标记的电容减小,反之亦然。该图示出了相对于锚固件106的对称结构,该对称结构在可移动框架102的静置状态下是有效的。图2和图3的传感器结构图示了现有技术的z方向敏感的加速度传感器结构,其是利用具有正电容电极区域和负电容电极区域的元件而被实施的。在这两幅图中分别用相应的极性标记+和-来表示这些正电容区域和负电容区域。图2图示了包括检验块(proofmass)202和枢转轴204的示例性机械元件。如果检验块202被视为沿x-y方向(所图示的)延伸且检验块202在z方向上受到加速度的影响,那么它就会经受力,该力致使它绕着它的轴204枢转。运动的检验块202上的正电容电极区域206P和负电容电极区域206N可以被布置成与静电极相互作用并且生成根据该检验块的运动而变化的电容。为了清楚起见,图2和图3中没有示出所形成的电容器的静电极。然而,与检验块一起运动的各电极能够具有专用静电极,或者公共静电极可以被设置给正电极区域和负电极区域。例如,电极区域206P、206N可以具有处于地电位的公共静电极。图3中的现有技术的传感器结构可以凭借可枢转的一对机械元件Z1、Z2而被实施,机械元件Z1、Z2各者包括检验块301、302和枢转轴Axi。此外,当检验块301、302在z方向上受到加速度的影响时,它们就会经受加速力,该加速力致使它们绕着它们各自的轴Axi枢转。所述机械元件被布置成以摇摆(see-saw)或跷跷板(“teeter-totter”)类型的方式运动,使得在枢转的同时,该元件的一侧向一个方向运动且同时该元件的另一侧向相反方向运动。电极区域303P、304P、305N、306N的电容相应地变化,因此,例如当电极303P的电容增大时,电极305N的电容相应地减小。同样地,当电极304P的电容增大时,电极306N的电容相应地减小。增大的和减小的P元件和N元件可以变化,但是在这两种情况下都会发生同时的、相反的摇摆运动。在图3中,两个机械元件的检验块关于枢转轴Axi呈不均衡地分布。图3中的上部机械元件和下部机械元件被图示为具有单一对称性。该枢转能够被布置成利用一对转矩定向(torque-oriented)的弹簧而绕着Axi转动。因此,枢转轴Axi能够利用具有转矩动作的一对弹簧而被实施。图4A和图4B图示了利用图2中的传感器结构而检测出的问题。图4A示出了使用了图2中的一个机械摇摆元件的3d加速度传感器结构的示意性顶视图。该传感器结构还包括图1中的梳状结构的电容检测单元以用于X方向和Y方向上的加速度检测。图4A图示了在检测器中所使用的该传感器结构的中间处的可枢转机械元件Z。如利用图2所讨论的,该机械元件被轴Axi分割成较短部分和较长部分。图4B图示了图4A中的传感器结构的机械元件Z的侧视图。图4B还示出了结构400其例如是罩或者基板,在该结构400上固定有针对Z的电容的接地电极402、404。当上面支撑有机械元件的该结构变形,或者当上面固定有接地电极的该结构变形时,如该示意图所显示的,接地电极到机械元件Z的电极区域的距离以不同的方式变化。例如,在图4B所示的情况下,到负电极的距离减小而到正电极的距离增大,这意味着传统的差分检测受到了该变形的严重干扰。图5A和图5B图示了利用图3中的传统传感器结构而检测出的问题。图5A示出了使用了图3中的一对机械摇摆元件的传感器结构的示意性顶视图照片。该传感器结构还包括图1中的梳状结构的电容检测单元XY以用于X方向和Y方向上的加速度检测。图5B图示了图5A中的传感器结构的机械元件Z1、Z2的侧视图。图5B示出了其上固定有针对Z1、Z2的电容的接地电极502、504的另一个结构500。可以看出的是:当其上支撑有机械元件的结构变形,或者当其上固定有接地电极的结构变形时,如该示意图所显示的,接地电极与机械元件Z1和Z2的电极区域之间的距离以不同的方式变化。例如,在图5B所示的情况下,从Z1、Z2的负电容电极区域到接地电极的距离增大,并且从Z1、Z2的正电容电极区域到正电极的距离减小。当差分检测被应用时,这导致该检测出现偏移误差。此外,如利用图2和图3所讨论的,Z1、Z2的检验块可以是相对于轴Axi不对称地分布的,且因此Z1、Z2的检验块不同地倾斜或者枢转。利本文档来自技高网...
加速度传感器结构及其使用

【技术保护点】
一种MEMS传感器结构,它包括:第一构件,所述第一构件用于提供第一差分耦合对的可检测量,所述第一差分耦合对的可检测量包括在第一位置处的减小的第一量和在第二位置处的增大的第二量,所述第一量与所述第二量相互耦合以使得因为同一操作而发生所述减小和所述增大,第二构件,所述第二构件用于提供第二差分耦合对的量,所述第二差分耦合对的量包括在第三位置处的减小的第三量和在第四位置处的增大的第四量,所述第三量与所述第四量相互耦合以使得因为同一操作而发生所述减小和所述增大,所述第一构件和所述第二构件被耦合以用于双差分检测,且所述第一构件和所述第二构件被对称地安置从而以相移的方式生成用于所述双差分检测的量。

【技术特征摘要】
【国外来华专利技术】2012.01.12 FI 201250341.一种传感器结构矩阵,其包括第一传感器单元(Z1,Z2),第二传感器单元(X)和第三传感器单元(Y),每个传感器单元具有平面结构,所述第一传感器单元包括MEMS传感器结构,所述MEMS传感器结构包括:第一检验块(Z1),其配置为绕着转动轴枢转以提供第一差分耦合对的可检测量,所述第一差分耦合对的可检测量包括在第一位置处的减小的第一量和在第二位置处的增大的第二量,所述第一量与所述第二量相互耦合以使得因为同一操作而发生所述减小和所述增大,第二检验块(Z2),其配置为绕着所述转动轴枢转以提供第二差分耦合对的可检测量,所述第二差分耦合对的可检测量包括在第三位置处的减小的第三量和在第四位置处的增大的第四量,所述第三量与所述第四量相互耦合以使得因为同一操作而发生所述减小和所述增大,所述第一检验块(Z1)和所述第二检验块(Z2)被耦合以用于双差分检测,且所述第一检验块(Z1)和所述第二检验块(Z2)被对称地安置从而以相移的方式生成用于所述双差分检测的量;所述第一传感器单元(Z1,Z2),所述第二传感器单元(X)和所述第三传感器单元(Y)被设置在共同的平面中;所述第二传感器单元(X)和所述第三传感器单元(Y)被设置为检测所述共同的平面中的加速度分量;所述第二传感器单元(X)和所述第三传感器单元(Y)沿在所述共同的平面上的第一方向(x)平行设置;在所述共同的平面中,所述第一传感器单元(Z1,Z2)设置在所述第二传感器单元(X)和所述第三传感器单元(Y)之间,使得所述MEMS传感器结构的所述转动轴与所述第一方向(x)平行;所述第一传感器单元的所述第一检验块(Z1)包括沿第二方向(y)在所述第二传感器单元(X)和所述第三传感器单元(Y)的尺寸外边延伸的端部,并且所述第一检验块(Z1)的端部延伸至所述第二传感器单元(X)和所述第三传感器单元(Y)在所述第一方向(x)上的外端,其中在所述共同的平面中所述第二方向(y)垂直于所述第一方向(x);所述第一传感器单元的所述第二检验块(Z2)包括沿所述第二方向(y)在所述第二传感器单元(X)和所述第三传感器单元(Y)的尺寸外边延伸的端部,并且在所述共同的平面中,所述第二检验块(Z2)的端部延伸至所述第二传感器单元(X)和所述第三传感器单元(Y)在所述第一方向(x)上的外端;所述第一检验块(Z1)的端部和所述第二检验块(Z2)的端部在所述转动轴的不同侧。2.如权...

【专利技术属性】
技术研发人员:维勒佩卡·吕特克宁列夫·罗舍尔安斯·布卢姆奎斯特
申请(专利权)人:村田电子有限公司
类型:发明
国别省市:芬兰;FI

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1