基于结构共振测量气体悬浮颗粒浓度的MEMS传感器制造技术

技术编号:9806729 阅读:148 留言:0更新日期:2014-03-23 19:39
本实用新型专利技术公开了一种基于结构共振测量气体悬浮颗粒浓度的MEMS传感器,包括一腔体,该腔体内形成有中空腔室,还包括过滤结构、气压产生结构、气体采样结构以及振动结构;所述过滤结构、气压产生结构相对设置在腔室的两端并与其相通,所述气体采样结构、振动结构相对设置在腔室的内部。本实用新型专利技术通过检测由附着在振动结构上的悬浮颗粒导致的振动频率或幅度的变化来监测气体悬浮颗粒浓度。与传统的颗粒传感器相比,本实用新型专利技术主体采用MEMS微加工技术制造,具有成本低,体积小,功耗低等优势,非常适合在消费电子,便携设备上的应用。(*该技术在2023年保护过期,可自由使用*)

【技术实现步骤摘要】
基于结构共振测量气体悬浮颗粒浓度的MEMS传感器
本技术涉及一种MEMS传感器,尤其涉及一种基于结构共振测量气体悬浮颗粒浓度的MEMS传感器。
技术介绍
已知处于共振状态中的结构、质量的改变会导致振幅和振动频率发生变化,通过检测这种变化可以测出质量改变的大小。我国目前对大气颗粒物的测定主要采用重量法,其原理是分别通过一定切割特征的采样器,以恒速抽取定量体积空气,使环境空气中的PM2.5和PMlO被截留在已知质量的滤膜上,根据采样前后滤膜的质量差和采样体积,计算出PM2.5和PMlO的浓度。如下为现有技术中常两种常用的测量方法:(I)Beta射线法:利用Beta射线衰减的原理,环境空气由采样泵吸入采样管,经过滤膜后排出,颗粒物沉淀在滤膜上,当3射线通过沉积着颗粒物的滤膜时,Beta射线的能量衰减,通过对衰减量的测定便可计算出颗粒物的浓度。( 2 )微量振荡天平法:在质量传感器内使用一个振荡空心锥形管,在其振荡端安装可更换的滤膜,振荡频率取决于锥形管特征和其质量。当采样气流通过滤膜,其中的颗粒物沉积在滤膜上,滤膜的质量变化导致振荡频率的变化,通过振荡频率变化计算出沉积在滤膜上颗粒物的质量,再根据流量、现场环境温度和气压计算出该时段颗粒物标志的质量浓度。上述测量方法及使用的传感器成本较高、体积大,而且功耗高,不便携带。
技术实现思路
本技术的目的是解决现有技术中的问题,提供一种造价低、体积小、便于携带的基于结构共振测量气体悬浮颗粒浓度的MEMS传感器。本技术的技术方案是:基于结构共振测量气体悬浮颗粒浓度的MEMS传感器,包括一腔体,该腔体内形成有中空腔室,还包括过滤结构、气压产生结构、气体采样结构以及振动结构;所述过滤结构、气压产生结构相对设置在腔室的两端并与其相通,所述气体采样结构、振动结构相对设置在腔室的内部。所述腔体包括由上至下依次键合为一体的腔体通道结构晶圆、振动结构晶圆以及衬底晶圆,所述腔室位于腔体通道结构晶圆和振动结构晶圆之间。[0011 ] 所述腔体通道结构晶圆由上下两片晶圆键合而成。所述过滤结构为开设在腔体一端的至少一个与腔室相通的小孔,在所述小孔的周向设置有管道。所述过滤结构为多路管道结构,所述管道结构横向贯穿所述腔体通道结构晶圆,所述气体采样结构与部分管道结构相通,所述气体产生结构与所述管道结构、腔室相通。所述气压产生结构为微泵或外接风扇或外接活塞机构。所述气体采样结构设置于腔室内的上方,所述振动结构设置在与气体采样结构相对的腔室内的下方。所述气体采样结构为一热电阻,该热电阻设置在腔室内上方。所述振动结构为微加工技术在振动晶圆上制造的MEMS谐振器,如薄膜体声波谐振器,声表面波谐振器。本技术通过检测由附着在振动结构上的悬浮颗粒导致的振动频率或幅度的变化来监测气体悬浮颗粒浓度。与传统的颗粒传感器相比,本技术主体采用MEMS微加工技术制造,具有成本低,体积小,功耗低等优势,非常适合在消费电子,便携设备上的应用。【附图说明】图1为本技术的结构示意图;图2为本技术的腔体横向剖开的结构示意图;图3为本技术的腔体纵向剖开的结构示意图;图4为本技术中颗粒进入多路管道示意图。【具体实施方式】为了使本技术实现的技术手段、技术特征、技术目的与技术效果易于明白了解,下面结合具体图示,进一步阐述本技术。如图1所示为本技术的一种基于结构共振测量气体悬浮颗粒浓度的MEMS传感器,包括一腔体101,该腔体101包括由上至下依次组合为一体的腔体通道结构晶圆102、振动结构晶圆103以及衬底晶圆104,在腔体通道结构晶圆102之间形成一个内中空的腔室105,本技术的腔体通道结构晶圆由上、下两片晶圆键合而成。本技术还包括过滤结构200、气压产生结构300、气体采样结构400以及振动结构500。本技术中的过滤结构200、气压产生结构300相对设置在腔室105的两端并与其相通,气体采样结构400、振动结构500相对设置在腔室405的内部。本技术的气体采样结构400促进悬浮颗粒沉积到振动结构500上。该气体采样结构400设置在腔室105内的上方,振动结构500设置在与气体采样结构400相对的腔室105内的下方。本技术中的气体采样结构400为一热电阻,该热电阻设置在腔室105内上方。本技术的振动结构500可在周期性驱动力作用下达到共振状态。其中一种实施方法为质量块通过运动弹簧连接结构与固定锚点相连接,利用微结构梁变形来引导质量块运动;其他振动结构实施方法包含但不仅限于声表面波谐振器SAW,薄膜体声波谐振器FBAR 等。本技术的振动结构可通过外部驱动源驱动而产生周期性驱动力。用来检测被驱动振动结构运动状态的检测部分的一种实施方法为梳齿检测电容,该梳齿检测电容的一端电容极板连接于该振动结构,另一端极板固定,通过检测两极板间电容的变化来检测共振频率的变化;其他检测原理包含但不仅限于压电效应、压阻效应、电磁场效应等。参考图1:本技术的过滤结构200有多种形式,可以为在腔体101 —端使用微加工技术加工的至少一个与腔室相通的小孔201,在这些小孔201的周向设置有管道202,这些小孔201能够阻挡部分体积较大的颗粒通过,并允许较小的颗粒被抽入腔室105内。参考图2、3:本技术的过滤结构200的另一种形式为多路管道结构203,管道结构203横向贯穿腔体通道结构晶圆102,气体采样结构400与部分管道结构203相通,气体产生结构300与所述管道结构203、腔室105相通。包含颗粒的气体从多路管道结构203的左端a通入时,较大的颗粒携带动能较大,不易改变运动方向,将进入c通道,而较小的颗粒动能较小,容易随上下运动的气流进入b通道,从而达到将大小颗粒分离的目的,如图4。本技术的气压产生结构300可以采用微泵或外接风扇或外接活塞机构,在本技术中以微泵301为例,条形部分为固定电极302,上加恒定电压,水滴形为微泵叶轮303,和同心轴外轴相连构成转子,转子上加交流电压,转子和固定电极间交替产生引力/斥力,使转子绕中心轴旋转。气压产生结构300在腔室105内产生负压,促使腔室105外气体通过管道结构进入腔室105内;促进腔室105内气体流动,同时在气体采样结构不工作时,清除振动结构500的上沉积的颗粒。本技术中通过气体采样结构400中的热电阻的热泳效应,使气流从热电阻流向振动结构500,带动它们之间的颗粒向振动结构500聚集,从而达到采样的目的。振动结构500可以使用任意原理的MEMS微谐振器来实施,包含但不仅限于声表面波谐振器SAW,薄膜体声波谐振器FBAR,以及其他基于质量块,悬臂梁结构的谐振器。 由Rayleigh (瑞利)能量法可以确定振动结构谐振频率为:本文档来自技高网...

【技术保护点】
基于结构共振测量气体悬浮颗粒浓度的MEMS传感器,包括一腔体,该腔体内形成有中空腔室,其特征在于:还包括过滤结构、气压产生结构、气体采样结构以及振动结构;所述过滤结构、气压产生结构相对设置在腔室的两端并与其相通,所述气体采样结构、振动结构相对设置在腔室的内部。

【技术特征摘要】
1.基于结构共振测量气体悬浮颗粒浓度的MEMS传感器,包括一腔体,该腔体内形成有中空腔室,其特征在于:还包括过滤结构、气压产生结构、气体采样结构以及振动结构;所述过滤结构、气压产生结构相对设置在腔室的两端并与其相通,所述气体采样结构、振动结构相对设置在腔室的内部。2.根据权利要求1所述的基于结构共振测量气体悬浮颗粒浓度的MEMS传感器,其特征在于:所述腔体包括由上至下依次键合为一体的腔体通道结构晶圆、振动结构晶圆以及衬底晶圆,所述腔室位于腔体通道结构晶圆和振动结构晶圆之间。3.根据权利要求1所述的基于结构共振测量气体悬浮颗粒浓度的MEMS传感器,其特征在于:所述的腔体通道结构晶圆由上、下两片晶圆键合而成。4.根据权利要求1所述的基于结构共振测量气体悬浮颗粒浓度的MEMS传感器,其特征在于:所述过滤结构为开设在腔体一端的至少一个与腔室相通的小孔,在所述小孔的周向设置有管道。5.根据权利要求1或4所述的基于结构共振测量气体悬浮颗粒浓度的MEMS传感器,其特征在于:所述...

【专利技术属性】
技术研发人员:邹波郭梅寒
申请(专利权)人:深迪半导体上海有限公司
类型:实用新型
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1