当前位置: 首页 > 专利查询>同济大学专利>正文

一种快速路短时交通流实时预测的方法技术

技术编号:8735277 阅读:189 留言:0更新日期:2013-05-26 11:47
本发明专利技术涉及一种快速路短时交通流实时预测的方法,其特征在于,包括:a.实时采集待仿真路段的交通数据;b.根据所述交通数据选择一车辆产生模型来将车辆分布到所述待仿真路段上;c.根据所述交通数据计算OD矩阵并根据所述OD矩阵分配所述待仿真路段的交通出行量;d.根据所述交通出行量和基于所述交通数据的一车辆行驶行为模型对所述待仿真路段的运动数据进行预测。

【技术实现步骤摘要】

本专利技术涉及一种智能交通仿真与预测领域。
技术介绍
及时、准确地预测未来短时间内(一般认为,不超过15分钟,甚至小于5分钟)的交通流状况,是制定正确诱导和控制措施的一个重要前提,也是目前广泛开展的智能运输系统(Intelligent Transportation System, ITS)项目开发研究的基本要求。从20世纪60年代开始,人们就开始把其他领域应用成熟的预测模型用于短时交通流预测领域,并开发了多种预测模型和方法。较早期的预测方法主要有:自回归模型(AR)、滑动平均模型(MA)、自回归滑动平均模型(ARMA)、历史平均模型(HA)和Box-Cox法等等。随着该领域研究的逐渐深入,又出现了一批更复杂的、精度更高的预测方法。大体来说,这些模型可分成五类:基于统计理论的模型、基于非线性预测理论的模型、基于神经网络理论的模型、基于动态分配理论的模型和基于微观交通仿真的模型。统计理论的模型因为要做统计分析的假设,因此未能反映交通流过程的不确定性与非线性,尤其无法克服随机干扰因素的影响;神经网络理论的模型因其参数训练非常复杂,计算时间太长,所需数据量大且数据平衡性要求高,不适合在线应本文档来自技高网...

【技术保护点】
一种快速路短时交通流实时预测的方法,其特征在于,包括:a.实时采集待仿真路段的交通数据;b.根据所述交通数据选择一车辆产生模型来将车辆分布到所述待仿真路段上;c.根据所述交通数据计算OD矩阵并根据所述OD矩阵分配所述待仿真路段的交通出行量;d.根据所述交通出行量和基于所述交通数据的一车辆行驶行为模型对所述待仿真路段的运动数据进行预测。

【技术特征摘要】

【专利技术属性】
技术研发人员:马云龙王坚
申请(专利权)人:同济大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1