本发明专利技术公开了一种面向IEEE802.15.6的生物身份认证方法,该方法将心电信号截取为单心拍,根据单心拍计算稳定单心拍,提取稳定单心拍与参考单心拍的相关系数和绝对值距离,并将相关系数进行阈值化处理,将处理后的相关系数和绝对值距离作为生物特征,建立隐条件随机场模型并储存于中心内。节点将加密心电信号附在IEEE?802.15.6的第四个安全关联帧后传送给中心,中心利用隐条件随机场模型,实现心电信号的身份认证。本发明专利技术简化了生物特征计算,同时能够安全、准确地实现身份认证,克服了采用口令、秘密信道进行身份认证存在的安全隐患,可用于IEEE?802.15.6的身份认证,亦可用于传统的个体身份识别场合。
【技术实现步骤摘要】
本专利技术属于信息处理
,更进一步涉及信息安全
中的面向IEEE802.15.6的生物身份认证方法。本专利技术可用于IEEE 802.15.6的身份认证,也可用于传统的个体身份识别。
技术介绍
身份认证是保护信息安全的第一道屏障,也是一个安全的通信系统需要提供的基本服务。IEEE 802.15.6协议中的身份认证是在公钥隐藏关联、口令认证关联、显示认证关联过程中完成的。公钥隐藏关联通过秘密信道传送公钥信息,只有合法的中心和节点能使用秘密信道进行通信,使用秘密信道进行通信的过程同时也是实现通信双方身份认证的过程。公钥隐藏关联方法的安全性依赖于秘密信道本身的安全性,如果秘密信道被攻击方获取,就无法安全地实现身份认证。口令认证关联中通信双方预先拥有秘密口令,发送方利用口令置乱公钥,只有合法的接收方能利用口令恢复出正确的公钥,从而实现了身份认证。但是,采用的口令无法进行更新,容易被攻击获取。显示认证关联中通信双方利用自己的私钥和对方的公钥计算并显示出5位十进制数,用户比较通信双方的5位十进制数是否相等,若相等则通知通信双方身份认证成功,若不相等则通知通信双方身份认证失败。但是,这种方法需要用户参与身份认证过程,过程较为繁琐。使用心电信号可在心电数据采集的过程中实现身份认证,无需使用秘密信道和口令,也无需用户参与。此外,心电信号具有难以被复制和模仿的特点,具有较高的安全性。目前已提出的心电信号身份认证方法只适用于传统的个体身份识别场合,不适用于要求低计算复杂度的IEEE 802.15.6。目前已提出的心电信号身份认证方法有:中国科学院在其专利申请“身份识别方法及系统”(申请号:201110137336.9,公开号:CN 102274029A)中提出了一种利用多种匹配方式实现心电信号身份识别方法。该方法利用相关系数阈值消除了突发干扰信号的干扰,对消除干扰后的心电信号构造特征向量,使用多种匹配方式提高了识别效率。但是该方法存在的不足是,多种匹配方式的使用提高了算法的计算复杂度,导致能量消耗增大。中国航天员科研训练中心在其专利申请“身份识别方法及应用该方法的身份识别系统”(申请号:201010033919.2,公开号:CN 101773394B)中提出了一种使用心电信号实现身份识别方法及其应用系统。该方法总结了可用于身份识别的心电信号特征:表象特征、解析特征、融合特征、变换域特征,提出利用相关系数阈值法进行身份识别。但是该方法的不足是,只要待识别者的身份识别特征向量与ECG特征模板库中某个身份识别特征向量的相关系数大于相关系数阈值,则认证一定能通过,这降低了正确识别率。Can Ye, Miguel Tavares Coimbra 等在其发表文章 “ Investigation of HumanIdentification using Two-Lead Electrocardiogram(ECG) Signals,,(Biometrics:TheoryApplications and Systems (BTAS),2010Fourth IEEE International Conference on,2010,1-8)中提出一种利用支持向量机实现心电信号身份识别的方法。该方法首先使用小波变换对心电信号进行分解,然后用独立分量分析法提取小波特征中的独立分量,最后使用支持向量机对独立分量进行分类识别。为了提高识别精度,该方法使用两个导联的数据融合进行认证。这种方法的正确识别率较高。但是该方法的不足是,需要利用两个导联数据进行识别,不适用于只能获取单导联数据的系统。
技术实现思路
本专利技术的目的是针对上述已有技术的不足,提出一种基于面向IEEE802.15.6的生物身份认证方法。本专利技术以少量的特征和简化的模型构建过程降低了计算复杂度,并保证了心电信号身份认证的高准确率。为实现上述目的本专利技术的思路是:将心电信号截取为单心拍,根据单心拍计算出稳定单心拍,提取稳定单心拍与参考单心拍的相关系数和绝对值距离,并将相关系数进行阈值化处理,将阈值化处理后的相关系数和绝对值距离作为生物特征,建立隐条件随机场模型并储存于中心内。节点将加密心电信号附在IEEE 802.15.6的第四个安全关联帧后传送给中心,中心利用隐条件随机场模型,实现心电信号的身份认证。本专利技术包括如下步骤:(I)建立训练样本库读取包含注册方在内的不同人不同时间段的心电信号,组成训练样本库。(2)利用小波变换消噪方法消除心电信号的噪声。⑶检测R波峰值3a)利用差分运算方法计算消噪心电信号的差分信号值;3b)按照下式得到差分阈值:Td = 0.00048.f其中,Td表示差分阈值,f表示心电信号的采样率;3c)将每个差分信号值与差分阈值进行比较,找出差分信号值大于差分阈值的所有点,将所有大于差分阈值的点中位置相邻的点组成上升段;3d)从上升段的右端点向时间的正方向搜索,当消噪心电信号满足时间正方向稳定点判断条件或上升段正方向极值点判断条件时终止搜索,得到上升段的正方向搜索终止点;当消噪心电信号同时不满足时间正方向稳定点判断条件和上升段正方向极值点判断条件时,搜索点横坐标值加I,继续搜索;3e)从上升段的左端点向时间的负方向搜索,当消噪心电信号满足时间负方向稳定点判断条件或上升段负方向极值点判断条件时终止搜索,得到上升段的负方向搜索终止点;当消噪心电信号同时不满足时间负方向稳定点判断条件和上升段负方向极值点判断条件时,搜索点横坐标值减I,继续搜索;3f)判断上升段正方向搜索终止点的值与上升段负方向搜索终止点的值之差是否大于0.4,将大于0.4的上升段作为快速上升段,将小于0.4的上升段舍去;3g)将每个差分信号值与差分阈值的相反值进行比较,找出差分信号值小于差分阈值相反值的所有点,将所有小于差分阈值相反值的点中位置相邻的点组成下降段;3h)从下降段的右端点向时间的正方向搜索,当消噪心电信号满足时间正方向稳定点判断条件或下降段正方向极值点判断条件时终止搜索,得到下降段的正方向搜索终止点;当消噪心电信号同时不满足时间正方向稳定点判断条件和下降段正方向极值点判断条件时,搜索点横坐标值加I,继续搜索;3i)从下降段的左端点向时间的负方向搜索,当消噪心电信号满足时间负方向稳定点判断条件或下降段负方向极值点判断条件时终止搜索,得到下降段的负方向搜索终止点;当消噪心电信号同时不满足时间负方向稳定点判断条件和下降段负方向极值点判断条件时,搜索点横坐标值减I,继续搜索;3j)判断下降段负方向搜索终止点的值与下降段正方向搜索终止点的值之差是否大于0.4,将大于0.4的下降段作为快速下降段,将小于0.4的下降段舍去;3k)将快速上升段和快速下降段按照左端点的横坐标值由小到大的顺序进行排列,将排列完成的快速上升段和快速下降段作为快速变化段;31)按照下式计算段间距阈值:Tc = 0.12.f其中,Tc为段间距阈值,f为心电信号的采样率;3m)找出间距值小于段间距阈值的所有两两相邻的快速变化段,将找出的每两个相邻快速变化段与对应的两个快速变化段之间的点合并成一个段,将合并后的段与未合并的快速变化段组成准R波段;3n)找出每个准R波段中的点的最大值,将最大值作为R波峰值。⑷获取单心拍4a)舍去本文档来自技高网...
【技术保护点】
一种面向IEEE802.15.6的生物身份认证方法,包括如下步骤:(1)建立训练样本库读取包含注册方在内的不同人不同时间段相同导联的心电信号,组成训练样本库;(2)利用小波变换消噪方法消除心电信号的噪声;(3)检测R波峰值3a)利用差分运算方法计算消噪心电信号的差分信号值;3b)按照下式得到差分阈值:Td=0.00048·f其中,Td表示差分阈值,f表示心电信号的采样率;3c)将每个差分信号值与差分阈值进行比较,找出差分信号值大于差分阈值的所有点,将所有大于差分阈值的点中位置相邻的点组成上升段;3d)从上升段的右端点向时间的正方向搜索,当消噪心电信号满足时间正方向稳定点判断条件或上升段正方向极值点判断条件时终止搜索,得到上升段的正方向搜索终止点;当消噪心电信号同时不满足时间正方向稳定点判断条件和上升段正方向极值点判断条件时,搜索点横坐标值加1,继续搜索;3e)从上升段的左端点向时间的负方向搜索,当消噪心电信号满足时间负方向稳定点判断条件或上升段负方向极值点判断条件时终止搜索,得到上升段的负方向搜索终止点;当消噪心电信号同时不满足时间负方向稳定点判断条件和上升段负方向极值点判断条件时,搜索点横坐标值减1,继续搜索;3f)判断上升段正方向搜索终止点的值与上升段负方向搜索终止点的值之差是否大于0.4,将大于0.4的上升段作为快速上升段,将小于0.4的上升段舍去;3g)将每个差分信号值与差分阈值的相反值进行比较,找出差分信号值小于差分阈值相反值的所有点,将所有小于差分阈值相反值的点中位置相邻的点组成下降段;3h)从下降段的右端点向时间的正方向搜索,当消噪心电信号满足时间正方向稳定点判断条件或下降段正方向极值点判断条件时终止搜索,得到下降段的正方向 搜索终止点;当消噪心电信号同时不满足时间正方向稳定点判断条件和下降段正方向极值点判断条件时,搜索点横坐标值加1,继续搜索;3i)从下降段的左端点向时间的负方向搜索,当消噪心电信号满足时间负方向稳定点判断条件或下降段负方向极值点判断条件时终止搜索,得到下降段的负方向搜索终止点;当消噪心电信号同时不满足时间负方向稳定点判断条件和下降段负方向极值点判断条件时,搜索点横坐标值减1,继续搜索;3j)判断下降段负方向搜索终止点的值与下降段正方向搜索终止点的值之差是否大于0.4,将大于0.4的下降段作为快速下降段,将小于0.4的下降段舍去;3k)将快速上升段和快速下降段按照左端点的横坐标值由小到大的顺序进行排列,将排列完成的快速上升段和快速下降段作为快速变化段;31)按照下式计算段间距阈值:Tc=0.12·f其中,Tc为段间距阈值,f为心电信号的采样率;3m)找出间距值小于段间距阈值的所有两两相邻的快速变化段,将找出的每两个相邻快速变化段与对应的两个快速变化段之间的点合并成一个段,将合并后的段与未合并的快速变化段组成准R波段;3n)找出每个准R波段中的点的最大值,将最大值作为R波峰值;(4)获取单心拍4a)舍去消噪心电信号中的第一个R波峰值和最后一个R波峰值,其余为保留的R波峰值;4b)以保留的R波峰值为参考,向时间负方向取个点,向时间正方向取个点,其中,表示向上取整符号,f表示心电信号的采样率;4c)将时间正方向和时间负方向上取出的点与对应的R波峰值点组成单心拍;(5)获得稳定单心拍5a)求消噪心电信号中所有单心拍的平均值,将其作为平均单心拍;5b)采用绝对值距离计算公式,求出消噪心电信号中的单心拍与平均单心拍的绝对值距离,保留绝对值距离大于0.16·f的单心拍,舍去绝对值距离小于0.16·f的单心拍;5c)求出保留的单心拍的平均值,将其作为稳定单心拍;(6)求步骤(1)中的注册方不同时间段的稳定单心拍的平均值,将其作为参考单心拍;(7)提取生物特征向量7a)采用相关系数计算公式,计算稳定单心拍与参考单心拍的相关系数;7b)以0.99为相关系数阈值,将小于0.99的相关系数置为0,大于0.99的相关系数保持不变,得到阈值化处理后的相关系数;7c)采用绝对值距离计算公式,求出稳定单心拍与参考单心拍的绝对值距离;7d)以阈值化处理后的相关系数和对应的绝对值距离组成生物特征向量;(8)将提取的生物特征向量作为训练特征向量;(9)获取训练数据集9a)判断训练特征向量是否属于注册方,若属于注册方则设定训练特征向量的类别标签为1,若不属于注册方则设定训练特征向量的类别标签为0;9b)将每个训练特征向量与该训练特征向量的类别标签组成一组训练数据,以所有训练数据的集合作为训练数据集;(10)建立身份认证的隐条件随机场...
【技术特征摘要】
1.一种面向IEEE802.15.6的生物身份认证方法,包括如下步骤: (1)建立训练样本库 读取包含注册方在内的不同人不同时间段相同导联的心电信号,组成训练样本库; (2)利用小波变换消噪方法消除心电信号的噪声; (3)检测R波峰值 3a)利用差分运算方法计算消噪心电信号的差分信号值; 3b)按照下式得到差分阈值:Td = 0.00048.f 其中,Td表不差分阈值,f表不心电信号的米样率; 3c)将每个差分信号值与差分阈值进行比较,找出差分信号值大于差分阈值的所有点,将所有大于差分阈值的点中位置相邻的点组成上升段; 3d)从上升段的右端点向时间的正方向搜索,当消噪心电信号满足时间正方向稳定点判断条件或上升段正方向极值点判断条件时终止搜索,得到上升段的正方向搜索终止点;当消噪心电信号同时不满足时间正方向稳定点判断条件和上升段正方向极值点判断条件时,搜索点横坐标值加I,继续搜索; 3e)从上升段的左端点向时间的负方向搜索,当消噪心电信号满足时间负方向稳定点判断条件或上升段负方向极值点判断条件时终止搜索,得到上升段的负方向搜索终止点;当消噪心电信号同时不满足时间负方向稳定点判断条件和上升段负方向极值点判断条件时,搜索点横坐标值减I,继续搜索; 3f)判断上升段正方向搜索终止点的值与上升段负方向搜索终止点的值之差是否大于.0.4,将大于0.4的上升段作为快速上升段,将小于0.4的上升段舍去; 3g)将每个差分信号值与差分阈值的相反值进行比较,找出差分信号值小于差分阈值相反值的所有点,将所有小于差分阈值相反值的点中位置相邻的点组成下降段; 3h)从下降段的右端点向时间的正方向搜索,当消噪心电信号满足时间正方向稳定点判断条件或下降段正方向极值点判断条件时终止搜索,得到下降段的正方向搜索终止点;当消噪心电信号同时不满足时间正方向稳定点判断条件和下降段正方向极值点判断条件时,搜索点横坐标值加I,继续搜索; 3i)从下降段的左端点向时间的负方向搜索,当消噪心电信号满足时间负方向稳定点判断条件或下降段负方向极值点判断条件时终止搜索,得到下降段的负方向搜索终止点;当消噪心电信号同时不满足时间负方向稳定点判断条件和下降段负方向极值点判断条件时,搜索点横坐标值减I,继续搜索; 3j)判断下降段负方向搜索终止点的值与下降段正方向搜索终止点的值之差是否大于,0.4,将大于0.4的下降段作为快速下降段,将小于0.4的下降段舍去; 3k)将快速上升段和快速下降段按照左端点的横坐标值由小到大的顺序进行排列,将排列完成的快速上升段和快速下降段作为快速变化段; 31)按照下式计算段间距阈值:Tc = 0.12.f 其中,Tc为段间距阈值,f为心电信号的采样率; 3m)找出间距值小于段间距阈值的所有两两相邻的快速变化段,将找出的每两个相邻快速变化段与对应的两个快速变化段之间的点合并成一个段,将合并后的段与未合并的快速变化段组成准R波段; 3η)找出每个准R波段中的点的最大值,将最大值作为R波峰值; (4)获取单心拍 4a)舍去消噪心电信号中的第一个R波峰值和最后一个R波峰值,其余为保留的R波峰值; 4b)以保留的R波峰值为参考,向时间负方向取「0.4./.|个点,向时间正方向取「0.12./1个点,其中,「I表示向上取整符号,f表示心电信号的采样率; 4c)将时间正方向和时间负方向上取出的点与对应的R波峰值点组成单心拍; (5)获得稳定单心拍 5a)求消噪心电信号中所有单心拍的平均值,将其作为平均单心拍; 5b)采用绝对值距离计算公式,求出消噪心电信号中的单心拍与平均单心拍的绝对值距离,保留绝对值距离大于0.16.f的单心拍,舍去绝对值距离小于0.16.f的单心拍; 5c)求出保留的单心拍的平均值,将其作为稳定单心拍; (6)求步骤(I)中的注册方不同时间段的稳定单心拍的平均值,将其作为参考单心拍; (7)提取生物特征向量 7a)采用相关系数计算公式,计算稳定单心拍与参考单心拍的相关系数; 7b)以0.99为相关系数阈值,将小于0.99的相关系数置为O,大于0.99的相关系数保持不变,得到阈值化处理后的相关系数; 7c)采用绝对值距离计算公式,求出稳定单心拍与参考单心拍的绝对值距离; 7d)以阈值化处理后的相关系数和对应的绝对值距离组成生物特征向量; (8)将提取的生物特征向量作为训练特征向量; (9)获取训练数据集 9a)判断...
【专利技术属性】
技术研发人员:同鸣,朱凯,李存志,王喜瑞,
申请(专利权)人:西安电子科技大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。