【技术实现步骤摘要】
本专利技术属于旋转机械设备的基于状态维修(CBM)
,具体涉及一种基于费希尔判别分析(FDA)与马氏距离(MD)相结合的旋转机械设备健康评估与故障诊断方法。
技术介绍
装备系统中的旋转机械设备一旦发生故障和失效问题,将严重影响装备的可用度并对安全性、任务性和经济性造成影响。因此,如何合理地制定维护计划,防止设备和产品因故障而失效,已成为降低寿命周期费用、提高可用度的重要手段。而要保持设备和产品的稳定性,现在多采用周期性预防维修或者事后维修的方式,但这两种方式将出现维修不足或者过维修的情况并带来严重的经济损失。随着性能评估、故障诊断和故障预测等技术发展,新的观念是采用智能维护系统,不停地对设备的性能状态进行监测、预测和评估,并按需制定维护计划即基于状态的维修(CBM),以防止它们因故障而失效,从而提高装备的可用度,减少停机时间,降低备件库存、维护费用和安全风险。因此如何对旋转机械设备当前的健康状态进行评估,进而进行故障诊断,已成为目前设备综合健康管理的研究热点之一。FDA是一种线性降维技术,在空间映射过程中把各类总体之间最大程度地分离。它确定了一系列的线性变 ...
【技术保护点】
基于费希尔判别分析与马氏距离的旋转机械健康评估与故障诊断方法,其特征在于,具体包括如下步骤:步骤一、基于小波包分解提取能量特征向量:在旋转机械设备的正常和各类故障工作状态下,采集振动信号,并进行小波包分解从而提取能量特征向量样本;步骤二、构建判别分析函数进行健康状态评估:将每种状态下所提取的能量特征向量样本组成训练集,用来进行FDA的学习,实现高维空间到低维空间的转换,并构建各判别总体和判别分析函数;计算能量特征向量与正常总体之间的马氏距离,通过对马氏距离的归一化,评估出旋转机械设备在t时刻的健康状态CV;步骤三、对旋转机械设备进行故障检测:将t时刻工作状态下旋转机械设备的 ...
【技术特征摘要】
【专利技术属性】
技术研发人员:吕琛,陶小创,刘红梅,王志鹏,陶来发,王自力,
申请(专利权)人:北京航空航天大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。